SICOM6648G Series Ethernet Switch Command Operation Manual

Publication Date: Dec, 2023

Version: V1.0

Disclaimer:

Kyland Technology Co., Ltd. tries to keep the content in this manual as accurate and as up-to-date as possible. This document is not guaranteed to be error-free, and we reserve the right to amend it without notice.

All rights reserved

No part of this documentation may be excerpted, reproduced, translated, annotated or duplicated, in any form or by any means without the prior written permission of KYLAND Corporation.

Copyright © 2023 Kyland Technology Co., Ltd.

Website: <u>http://www.kyland.com</u> FAX: +86-10-88796678 Email: <u>services@kyland.com.cn</u>

Contents

1 Basic Configuration Commands	1
1.1 System Management Commands	1
1.1.1 File Management Configuration Commands	1
1.1.2 Basic System Management Commands	7
1.2 Terminal Service Configuration Commands	
1.2.1 Telnet Configuration Commands	
1.2.2 Terminal Configuration Commands	
1.3 Maintenance and Debugging Tool Commands	45
1.3.1 Network Testing Tool Commands	45
1.3.2 Fault Diagnosis Commands	
1.3.3 SSH Configuration Commands	71
2 Network Management Configuration Commands	81
2.1 Network Management Configuration Commands	81
2.1.1 SNMP Commands	81
2.1.2 RMON Configuration Commands	
3 Security Configuration Commands	114
3.1 CAAA Configuration Commands	114
3.1.1 AAA Authentication Configuration Commands	114
3.1.2 AAA Authorization Configuration command	
3.1.3 Accounting Command	
3.1.4 Local Account Policy Configuration Commands	
3.1.5 RADIUS Configuration Commands	
3.1.6 TACACS+ Commands	162
4 WEB Configuration Commands	
4.1 HTTP Configuration Commands	
4.1.1 ip http language	
4.1.2 ip http port	
4.1.3 ip http secure-port	
4.1.4 ip http server	169
4.1.5 ip http http-access enable	169
4.1.6 ip http ssl-access enable	
4.1.7 ip http web use-footer	

4.1.8 ip http web max-vlan	170
4.1.9 ip http web max-macaddr-table	
4.1.10 ip http web igmp-groups	171
4.1.11 ip http web portpanel visible	172
4.1.12 ip http web max-syslogs	173
4.1.13 show ip http	173
5 Interface Configuration Commands	174
5.1 Interface Configuration Commands	174
5.1.1 Interface Configuration Commands	174
5.1.2 Configuration Example	
6 Interface Range Commands	181
6.1 Interface Range Command	181
6.1.1 Interface Range	
7 Interface Physical Characteristic Configuration Commands	182
7.1 Interface Physical Characteristic Configuration Commands	182
7.1.1 Interface Physical Characteristic Commands	
8 Port Additional Characteristics Configuration Commands	
8.1 Port Additional Characteristics Configuration Commands	
8.1.1 Configuring Port Isolation	
8.1.2 Configuring Storm-control	
8.1.3 Configuring Switchport Rate-limit	
8.1.4 Configuring Port Loop Check	188
8.1.5 Configuring Port MAC-address learning	189
8.1.6 Configuring Port Security	
8.1.7 Configuring Port Binding	192
8.1.8 Configuring SVL/IVL	193
8.1.9 Configuring Link Scan	193
8.1.10 Configuring Port Enhanced Link Status Check	194
8.1.11 Configuring System mtu	195
9 Port Mirroring Configuration Commands	196
9.1 Configuring Port Mirroring Commands	
9.1.1 Port Mirroring Configuration Commands	
10 MAC Address Table Characteristics Configuration Commands	199
10.1 MAC Address Configuration Commands	

10.1.1 MAC Address Configuration Commands	
11 MAC Address List Characteristic Configuration Commands	203
11.1 MAC Access List Configuration Commands	203
11.1.1 MAC Access List Configuration Commands	203
12 802.1x Configuration Commands	207
12.1 Chapter 1 802.1x Configuration Commands	207
12.1.1 802.1x Configuration Commands	
13 VLAN Configuration Commands	228
13.1 VLAN Configuration Commands	228
13.1.1 VLAN Configuration Commands	228
13.2 GVRP Configuration Commands	237
13.2.1 GVRP Configuration Commands	
13.2.2 GARP Configuration Commands	241
14 STP Configuration Commands	
14.1 STP Configuration Commands	247
14.1.1 STP Configuration Commands	247
14.1.2 VLAN STP Configuration Commands	256
14.2 RSTP Configuration Commands	265
14.2.1 RSTP Configuration Commands	265
14.3 MSTP Configuration Commands	271
14.3.1 MSTP Configuration Command	271
15 STP Optional Characteristic Configuration Commands	293
15.1 STP Optional Characteristic Configuration Commands	293
15.1.1 STP Optional Characteristic Configuration Commands	293
16 Link Aggregation Configuration Commands	302
16.1 Link Aggregation Configuration Commands	302
16.1.1 Link Aggregation Configuration Commands	
17 PDP Configuration Commands	309
17.1 PDP Configuration Commands	309
17.1.1 PDP Commands	309
18 LLDP Configuration Commands	
18.1 LLDP Configuration Commands	
18.1.1 LLDP Commands	314
19 Backuplink Configuration Commands	337

19.1 Backup Link Configuration Commands	337
19.1.1 Global Configuration Commands	337
19.1.2 Port Configuration Commands	340
19.1.3 Show Configuration Commands	346
20 EAPS Configuration Commands	349
20.1 EAPS Configuration Commands	349
20.1.1 Global Configuration Commands	349
20.1.2 Port Configuration Commands	355
20.1.3 Show Configuration Commands	358
21 MEAPS Configuration Commands	360
21.1 MEAPS Configuration Commands	360
21.1.1 Global Configuration Commands	360
21.1.2 Port Configuration Commands	371
21.1.3 Show Configuration Commands	376
22 UDLD Configuration Commands	377
22.1 UDLD Configuration Commands	377
22.1.1 UDLD Configuration Commands	377
23 IGMP-SNOOPING Configuration Commands	384
23.1 IGMP-SNOOPING Configuration Commands	384
23.1.1 IGMP-SNOOPING Commands	384
24 MLD-Snooping Configuration Commands	408
24.1 MLD Multicast Configuration Commands	408
24.1.1 MLD Multicast Configuration Commands	408
25 OAM Configuration Commands	420
25.1 OAM Configuration Commands	420
25.1.1 OAM Configuration Commands	420
26 CFM and Y1731 Configuration Commands	435
26.1 Overview	435
26.1.1 Stipulation	435
26.2 CFM	435
26.2.1 CFM Configuration Commands	435
26.2.2 CFM Maintenance Commands	446
26.2.3 CFM Control Commands	451
26.2.4 CFM Query Commands	453

27 DHCP-Snooping Configuration Commands	457
27.1 DHCP-Relay Snooping Configuration Commands	
27.1.1 DHCP-Relay Snooping Commands	457
28 MACFF Configuration Commands	475
28.1 MACFF Configuration Commands	475
28.1.1 macff enable	475
28.1.2 macff vlan <i>vlan_id</i> enable	475
28.1.3 macff vlan <i>vlan_id</i> default-ar <i>A.B.C.D</i>	476
28.1.4 macff vlan <i>vlan_id</i> enable other-ar <i>A.B.C.D</i>	477
28.1.5 macff disable	
28.1.6 debug macff	478
29 Layer-2 Tunneling Protocol Configuration Commands	
29.1 Layer-2 Tunneling Protocol Configuration Commands	479
29.1.1 Layer-2 Tunneling Protocol Configuration Commands	479
30 QoS Configuration Commands	481
30.1 QoS Configuration Commands	481
30.1.1 QoS Configuration Commands	481
31 DoS Attack Prevention Configuration Commands	
31.1 DoS Attack Prevention Configuration Commands	
31.1.1 DoS-Attack Prevention Configuration Commands	490
31.2 Anti-Attack Configuration Commands	493
31.2.1 Anti-Attack Configuration Commands	493
32 Network Protocol Configuration Commands	505
32.1 IP Address Configuration Commands	505
32.1.1 IP Address Configuration Commands	505
32.2 DHCP Client Configuration Commands	521
32.2.1 DHCP Client Configuration Commands	521
32.3 IP Service Configuration Commands	528
32.3.1 IP Service Configuration Commands	528
32.3.2 IP Access List Configuration Commands	
32.3.3 IP Access List Configuration Commands	575
32.4 IP Access List Configuration Commands	583
32.4.1 IP Access List Configuration Commands	
33 Routing Configuration Commands	587

33.1 VRF Configuration Commands	587
33.1.1 VRF Configuration Commands	587
33.2 Static Route Configuration Commands	598
33.2.1 Static Route Configuration Commands	598
33.3 RIP Configuration Commands	611
33.3.1 RIP Configuration Commands	611
33.4 BEIGRP Configuration Commands	649
33.4.1 BEIGRP Configuration Commands	649
33.5 OSPF Configuration Commands	
33.5.1 OSPF Configuration Commands	677
33.6 BGP Configuration Commands	750
33.6.1 BGP Configuration Commands include:	750
33.7 Public Routing Configuration Commands	825
33.7.1 Ip aspath-list Configuration Commands	825
33.7.2 ip community-list Configuration Commands	
33.7.3 ip prefix-list commands	831
33.7.4 route-map Commands	837
33.8 PBR Configuration Commands	873
33.8.1 PBR Configuration Commands	873
33.9 Switch Routing Protocol Highpriority Configuration Commands	888
33.9.1 Switch Routing Protocol Highpriority Configuration Commands	888
34 IPv6 Configuration Commands	
34.1 IPv6 Configuration Commands	
34.1.1 IPv6 Commands	
34.2 Chapter 2 IPv6 Configuration Commands	
34.2.1 IPv6 Configuration Commands	
34.2.2 Network Test Tools Commands	
35 Neighbor Detection Configuration Commands	910
35.1 ND Commands	
35.1.1 debug ipv6 nd	910
35.1.2 show ipv6 neighbors	911
35.1.3 clear ipv6 neighbors	911
35.1.4 ipv6 neighbor	912
36 OSPFv3 Configuration Commands	914

36.1 OSPFv3 Configuration Commands	
36.1.1 OSPFv3 Configuration Commands	
37 NTP Configuration Commands	970
37.1 NTP Configuration Commands	970
37.1.1 NTP Commands	970
38 IP-Attack Prevention Configuration Commands	
38.1 IP-Attack Prevention Configuration Commands	
38.1.1 IP-Attack Prevention Commands	
39 IP Direct Network Segment Scanning Attack Protection Configuration Comma	ands 996
39.1 IP Direct Network Segment Scanning Attack Protection Configuration Con	mmands996
39.1.1 IP Direct Network Segment Scanning Attack Protection Commands	
40 Interface Cable Diagnostic Configuration Commands	1001
40.1 Interface Cable Diagnostic Configuration Commands	
40.1.1 Interface Cable Diagnostic Configuration Commands	1001
41 Optical Port Additional Function Configuration Commands	1003
41.1 Optical Port Additional Function Configuration Commands	1003
41.1.1 Configure the DDM Function	1003
41.1.2 Configure the single-fiber transceiver function of the optical port	
41.1.3 Optical module auto-configuration	

1 Basic Configuration Commands

1.1 System Management Commands

1.1.1 File Management Configuration Commands

The file management configuration commands include:

- сору
- delete
- dir
- ip address
- ip route
- show configuration
- format
- more

1.1.1.1 **copy**

Syntax

To read a file from the tftp server to a switch, use the **copy** command. **copy tftp**<*:filename*> {**flash**<*:filename*> |**rom**} [*ip_addr*]

Parameter

Parameter	Description
tftp<:filename>	Read a file from the tftp server. Filename indicates the relevant filename. If not specified the filename, the system will prompt user to input the filename after executing the copy command.
flash <:filename>	Write a file to the flash memory of the switch. Filename indicates the relevant filename. If not specified the filename, the system will prompt user to input the filename after executing the copy command.
rom	Updates bootrom for the switch.
ip_addr	Specifies the IP address of tftp srever. If not specified, the system will prompt user to input the IP address after executing the copy

command.

Default

None

Command Mode

Monitor mode

Usage Guidelines

None

Example

monitor#copy tftp:switch.bin flash:switch.bin 192.2.2.1

The example shows how to read the switch.bin from the tftp server to the flash memory of the switch:

Related Command

None

1.1.1.2 delete

Syntax

To delete a file, use the **delete** command. **delete** *file-name*

Parameter

Parameter	Description
file-name	Specifies the filename (maximum 20 characters)

Default

If not specified the file-name, the system will delete startup-config by default.

Command Mode

Monitor mode

Usage Guidelines

None

Related Command

None

1.1.1.3 dir

Syntax

To display filename, use the **dir** command. **dir** *file-name*

Parameter

Parameter	Description
file-name	Specifies the filename (maximum 20 characters)

Default

None

Command Mode

monitor mode

Usage Guidelines

None

Related Command

None

1.1.1.4 ip address

Syntax

To set an IP address for an Ethernet interface, use the **ip address** command. **ip address** *ip-address mask*

Parameter

Description

ip-address	IP address
mask	IP network mask

Default

None

Command Mode

Monitor mode

Usage Guidelines

None

Example

monitor#ip address 192.168.1.1 255.255.255.0

Related Command

ip route ping

1.1.1.5 ip default-gateway

Syntax

To set the default gateway, run the following command: **ip default-gateway** gw_ip_addr

Parameter

Parameter	Description
gw_ip_addr	The address of the default gateway.

Default

None

Command Mode

The monitoring state.

Usage Guidelines

None

Example

monitor#ip default-gateway 192.168.1.3

Related Command

ip address

1.1.1.6 show configuration

Syntax

To display the running configuration file, use the **show configuration** command. **show configuration**

Parameter

None

Default

None

Command Mode

Monitor mode

Usage Guidelines

None

Related Command

None

1.1.1.7 format

Syntax

To format file system, use the **format** command. **format**

Parameter

None

Default

None

Command Mode

EXEC

Usage Guidelines

All files in the file system will de deleted after executing the format command.

Related Command

None

1.1.1.8 more

Syntax

To display the contents of a file, use the **more** command. **more** *file-name*

Parameter

Parameter	Description
file-name	Specifies the name of a file (maximum 20 characters)

Default

None

Command Mode

EXEC

Usage Guidelines

If all files are displayable characters, they will be displayed in ASCII format, or they will be displayed binary format.

Related Command

None

1.1.2 Basic System Management Commands

- bootflash
- cd
- chinese
- english
- date
- md
- pwd
- rd
- rename
- reboot
- show break
- alias
- boot system flash
- help
- show
- history
- show alias

1.1.2.1 boot flash

Syntax

To enable the system from the specified file in monitor mode, use the **boot flash** command. **boot flash** *filename*

Parameter

Parameter	Description
filename	Specified file name.

Default

Command Mode

Monitor mode

Usage Guidelines

Use the boot flash command to enable the device after user entering the monitor mode.

Example

monitor#boot flash switch.bin

Related Command

None

1.1.2.2 **cd**

Syntax

To change the current directory, use the **cd** command. **cd** *directory*|..

Parameter:

Parameter	Description
directory	Name of the directory. (maximum 20 characters)
	Upper directory.

Default

None

Command Mode

Monitor mode

Usage Guidelines

None

Example

monitor#cd my_dir

Related Command

pwd

1.1.2.3 chinese

Syntax

To switch command prompt to chinese mode, use the **chinese** command.

Parameter

None

Default

None

Command Mode

Monitor mode

Usage Guidelines

None

Example

None

Related Command

None

1.1.2.4 date

Syntax

To set the absolute time, use the **date** command.

Parameter

None

Default

Command Mode

Monitor mode

Usage Guidelines

This command is used to set the abslute time for the system. For the switch with a battery-powered clock, the clock will be powered by the battery. If the clock doesn't keep good time, you need to change the battery.

For the swich without a battery-powered clock, the system date is configured to July 1st, 1970 after the reboot of the switch, and user needs to set the current time each time when starting the switch.

Example

monitor#date

The current date is 2000-7-27 21:17:24

Enter the new date(yyyy-mm-dd):2000-7-27

Enter the new time(hh:mm:ss):21:17:00

Related Command

1.1.2.5 english

Syntax

To switch the command prompt to english mode, use the english command.

Parameter

None

Default

None

Command Mode

Monitor mode

Usage Guidelines

Example

None

Related Command

None

$1.1.2.6 \ \textbf{md}$

Syntax

md directory

Parameter

Parameter	Description
directory	Name of directory (maximum 20 characters)

Default

None

Command Mode

Monitor mode

Usage Guidelines

To set a directory, use the **md** command

Related Command

None

1.1.2.7 **pwd**

Parameter

None

Default

Command Mode

Monitor mode

Usage Guidelines

To display the current directory, use the pwd command

Related Command

None

1.1.2.8 **rd**

Syntax

rd directory

Parameter

Parameter	Description
directory	Name of the directory(maximum 20 characters)

Default

None

Command Mode

Monitor mode

Usage Guidelines

The system prompts if the directory is not empty. The system prompts if the directory doesn't exist. To delete a command, use the rd command.

Related Command

None

1.1.2.9 rename

Syntax

To rename a file in a file system, use the **rename** command. **rename** *old_file_name new_file_name*

Parameter

Parameter	Description
old_file_name	The original filename.
new_file_name	The new filename.

Default

None

Command Mode

Monitor mode

Usage Guidelines

None

Related Command

None

1.1.2.10 reboot

Parameter

None

Default

None

Command Mode

Monitor mode

Usage Guidelines

To reboot a switch, use the **reboot** command.

Related Command

1.1.2.11 alias

Syntax

alias alias_name command_line

Parameter

Parameter	Description
alias_name	Name the alias name.
command_line	The command of naming the alias name.

Default

None

Comand mode

Global configuration mode

Usage Guidelines

The command can be used to replace "command_line" with "alias_name". For instance, alias update1 copy tftp: switch.bin flash:switch.bin 10.168.30.188. The command " copy tftp: switch.bin flash:switch.bin 10.168.30.188 " will automatically run on the SWITCH only update 1 is input.

Example

The following example shows how to use the command to replace " copy tftp:switch.bin flash:switch.bin 10.168.30.188" with " update1". alias update1 copy tftp:switch.bin flash:switch.bin 10.168.30.188

Related Command

None

1.1.2.12 boot system flash

Syntax

Run the **boot system flash** command to specify the systematic mirroring files when the system is started up. Run the **no boot system flash** command to delete the previous configuration.

boot system flash filename

no boot system flash filename

Parameter

Parameter	Description
filename	It is the specified filename, which contains no more than 20 characters.

Default

None

Command Mode

Global configuration mode

Usage Guidelines

If you have not configured the command, the system will execute the first systematic mirroring file in the flash file system. If you have configured multiple commands, the system will execute the mirroring files one by one. If the file does not exist or the check sum is wrong, the system will execute the next file. If both fail, the system will run at the monitoring state.

Example

config#boot system flash switch.bin

Related Command

None

1.1.2.13 help

Syntax

help

Parameter

None

Default

Command Mode

EXEC mode

Usage Guidelines

The command is used to display the help system of the switch.

Example

The folloowing example shows how to display the help system of the switch, after you enter the command.

switch# help

Help may be requested at any point in a command by entering a question mark '?', If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.

Two styles of help are provided:

- 1. Full help is available when you are ready to enter a command argument(e.g.'show ?') and describes each possible argument.
- 2. Partial help is provided when an abbreviated argument is entered and you want to know what arguments match the input (e.g. 'interface e?'.)

Related Command

None

1.1.2.14 history

Syntax

The command is used to check the historical commands. Run the **[no] history** command to delete the historical commands.

[no] history [+ <count> | - <count> | clear]

Parameter

Parameter	Description
+ <count></count>	Displays the count<1-20> historical command from the beginning to the end.
- <count></count>	Displays the count<1-20> historical command from the end to the beginning.

Default

If there are no more than 20 commands executed, all historical command lines will be displayed from the beginning to the end. If there are more than 20 commands executed, the latest 20 command lines will be displayed from the beginning to the end.

Command Mode

Abandom command mode

Usage Guidelines

The modularized switch can save up to 20 historical commands. You can invoke these commands with the "up" or "down" key or directly use it after edition.

Example

The following example shows the latest five commands from the end to the beginning:

switch#history - 5 config int e1/1 no ip addr ip addr 192.2.2.49 255.255.255.0 exit

Related Command

None

1.1.2.15 show

Syntax

To display the relevant information of the system, which or specific ones of which can be filtered through the filter, run the following command:

show <sub-command> [| <begin | include | exclude | redirect> <WORD> [SEPARATOR WORD]]

Parameter

Parameter	Description
sub-command	Stands for a child command.

1	Uses the output filter.
begin	Means to show the result of the show command starting with a specific word.
include	Means to show the sentences of the result of the show command containing a specific word.
exclude	Means not to show the lines of the result of the show command containing a specific word.
redirect	Redirects the result of the show command to the file in the designated file system.
WORD	Stands for a designated word, which is the designated filename as to the redirect command.
SEPARATOR WORD	Stands for the designated separator, which is space by default to separate the words.

Default

None

Command Mode

EXEC mode or global configuration mode

Usage Guidelines

This command can be used to filter the useless information in the result of the **show** command, especially when the result is too much to read. For example, if you want to browse a designated MAC address in an MAC address table, which contains a lot of MAC addresses, this command will give you convenience for you.

Example

The following example shows how to display the lines, in which the word "interface" is contained, in the result of **show running-config**. Switch#show running-config | include interface Building configuration...

Current configuration:

!

interface GigaEthernet0/1 interface GigaEthernet0/2 interface GigaEthernet0/3 interface GigaEthernet0/4 interface GigaEthernet0/5 interface GigaEthernet0/6 interface GigaEthernet0/7 interface GigaEthernet0/8

Related Command

None

1.1.2.16 show alias

Syntax

To display all alias commands, or the alias commands in a specified mode, use the show aliases command.

show alias [<alias name>]

Parameter

Parameter	Description	
alias name	Alias command	

Default

Display all alias commands in the format of alias name=command line.

Command Mode

EXEC mode or global configuration mode

Usage Guidelines

None

Example

The following example shows how to use the command to display all alias names: switch_config#show alias

hualab=date

router=snmp

Related Command

alias

1.1.2.17 show break

Syntax

It is used to display the abnormal information of the system. The system stores all abnormal information in the latest running. The abnormal information contains the times of abnormity, the stack content and the invoked functions when abnormity occurs.

Parameter

None

Default

None

Command Mode

Monitor mode

Usage Guidelines

The command is only used for debugging.

Related Command

None

1.2 Terminal Service Configuration Commands

1.2.1 Telnet Configuration Commands

The chapter describes telnet and related commands. The **telnet** command is used to establish a session with the remote server. The **telnet** command is always working at the UNIX operating systems. Option negotiation is required. Telnet does not provide itself the login authentication. Telnet is different from Rlogin because telnet does not provide itself password check.

The telnet configuration commands include:

- telnet
- ip telnet

- where
- disconnect
- resume
- clear Telnet
- show Telnet
- debug Telnet

1.2.1.1 telnet

Syntax

The following is a command for establishing a telnet session:

telnet server-ip-addr/server-host-name [/port port][/source-interface interface] [/local local-ip-addr] [/debug][echo/noecho] [/script scriptname]

Parameter

Parameter	Description		
server-ip-addr	Dotted-decimal IP address of the remote server		
server-host-name	Name of the remote server, which is configured by the ip host command		
port	Telnet port of the remote server		
interface	Local interface where the telnet connection is originated		
local-ip-addr	Local IP address where the telnet connection is originated		
/debug	A negotiation process for openning the debug at the client side and printing the connection		
/echo /noecho	Enable or disable the local echo. The default value is noecho .		
scriptname	A script name used for auto login		

Default

The default port number is 23. The interface has no default number.

Command Mode

EXEC mode or global configuration mode

Usage Guidelines

You can use one of the following command lines to establish a remote login.

telnet server-ip-addr/server-host-name

In this case, the application program directly sends the telnet login request to port 23 of the remote server. The local IP address is the IP address which is nearest to the peer and found by the routing table.

telnet server-ip-addr/server-host-name /port port

In this case, the application program sends a telnet login request to the port of the peer.

telnet server-ip-addr/server-host-name /source-interface interface

In this case, the application program uses the IP address on the interface ass the local IP address.

telnet server-ip-addr/server-host-name /debug

In this case, the application program opens the debug and exports the connection at the client side.

telnet server-ip-addr/server-host-name echo/noecho

In this case, the application program enables or disables the local echo. The local echo is disabled by default. The echo is completed at the server side. Only when the server is not in charge of echo is the local echo enabled.

telnet server-ip-addr/server-host-name /script scriptname

Before executing the automatic login command of the script, run the command **ip telnet script** to configure the script.

The previous commands can be used together.

During the session with the remote server, you can press the **Q** button to exit the session. If the session is not manually closed, the session will be complete after a 10-second timeout.

Example

Suppose you want to telnet server 192.168.20.124, the telnet port of the server is port 23 and port 2323, and the local two interfaces are e1/1(192.168.20.240) and s1/0(202.96.124.240). You can run the following operations to complete the remote login.

1. telnet 192.168.20.124 /port 2323

In this case, the telnet connection with port 2323 of the peer is to be established. The local IP address of the peer is 192.168.20.240.

2. telnet 192.168.20.124 /source-interface s1/0

In this case, the telnet connection with port 23 of the peer is to be established. The local IP address of the peer is 202.96.124.240.

3. telnet 192.168.20.124 /local 192.168.20.240

In this case, the telnet connection with port 23 of the peer is to be established. The local IP address of the peer is 192.168.20.240.

4. telnet 192.168.20.124 /debug

In this case, the telnet connection negotiation with port 23 of the peer will be printed out.

5. telnet 192.168.20.124 /echo

In this case, the local echo is enabled. If the echo is also enabled at the server side, all input will be echoed twice.

6. telnet 192.168.20.124 /script s1

Use login script S1 for automatic login.

1.2.1.2 ip telnet

Syntax

The following are the configuration commands of the telnet session: ip telnet source-interface vlan value ip telnet access-class accesslist ip telnet listen-port start-port [end-port] ip telnet script scriptname 'user_prompt' user_answer 'pwd_prompt' pwd_answer

Parameter

Parameter	Description
num	Maximum number of Telnet connections.
value	Local interface where the telnet request is originated
accesslist	Access list name to limit the source address when the local client receives the connection
start-port	Starting port number designated at the listening port area
end-port	End port number designated at the listening port area
scriptname	Name of the login script
user_prompt	Username prompt returned by the telnet server
user_answer	Username response information from the client side
pwd_prompt	Password prompt returned by the telnet server
pwd_answer	Password response information submitted by the client side

Default

Command Mode

Global configuration

Usage Guidelines

• Run the following command to configure the local interface for originating the telnet connection:

ip telnet source-interface interface

In this case, all telnet connections originated afterwards are through the interface. The configuration command is similar to the command **telnet source-interface** *interface*. However, the **telnet** command has no interface parameters followed. When the interface is configured and the **telnet** command has interface parameters, the interface followed the telnet command is used.

 Run the following command to configure the name of the access list which performs limitation on local telnet connection reception.

ip telnet access-class accesslist

In this case, the access list will be checked when the server accepts all telnet connections.

• Run the following command to configure a port, except the default port 23, to receive the telnet service.

ip telnet listen-port start-port [end-port]

Usage Guidelines: If the end port number is not designated, the listening will be executed at a specific port. The number of the designated ports cannot be bigger than 16 and the port number ranges between 3001 and 3999.

• Run the following command to configure the telnet login script.

ip telnet script s1 'login:' switch 'Password:' test

Usage Guidelines: When the script is configured, the username prompt and password prompt and their answers must be correctly matched, especially the prompt information is capital sensitive and has inverted comma ("). If one of them is wrongly configured, the automatic login cannot be performed.

Note:

You can add the NO prefix on the above four commands and then run them to cancel previous configuration.

Example

1. ip telnet source-interface vlan1

In this case, the interface vlan1 will be adopted to originate all telnet connections afterwards.

2. ip telnet access-class abc

In this case, all the received telnet connections use access list **abc** to perform the access list check.

3. ip telnet listen-port 3001 3010

Except port 23, all ports from port 3001 to port 3010 can receive the telnet connection.

4. ip telnet script s1 'login:' switch 'Password:' test

The login script **s1** is configured. The username prompt is **login:** and the answer is **switch**. The password prompt is **Password:** and the answer is **test**.

1.2.1.3 ctrl-shift-6+x (the current connection is mounted)

Syntax

Run the following command to mount the current telnet connection: ctrl-shift-6+x

Parameter

None

Default

None

Command Mode

Any moment in the current telnet session

Usage Guidelines

You can use the shortcut key to mount the current telnet connection at the client side.

Example

switchA>telnet 192.168.20.1

Welcome to Multi-Protocol 2000 Series switch

switchB>ena

switchB#(press ctrl-shift-6+x)

switchA>

You press **ctrl-shift-6+x** to mount the telnet connection to switch B and return to the current state of switch A.

1.2.1.4 where

Syntax

Run the following command to check the currently mounted telnet session: where

Parameter

None

Default

None

Command Mode

Global configuration

Usage Guidelines

You can use the command to check the mounted outward telnet connection at the client side. The displayed information contains the serial number, peer address, local address and local port.

Note:

The **where** command is different from the **show telnet** command. The former is used at the client side and the displayed information is the outward telnet connection. The latter is used at the server and the displayed information is the inward telnet connection.

Example

switchA>telnet 192.168.20.1							
Welcome	Welcome to Multi-Protocol 2000 Series switch						
switchB>	switchB>ena						
switchB#(Press ctrl-shift-6+x)							
switchA> telnet 192.168.20.2							
Welcome to Multi-Protocol 2000 Series switch							
switchC>ena							
switchC#(Press ctrl-shift-6+x)							
switchA>where							
NO.	Remote Addr	Remote Port	Local Addr	Local Port			
1	192.168.20.1	23	192.168.20.180	20034			

2 192.168.20.2 23 192.168.20.180 20035

Enter where at switch A. The mounted outward connection is displayed.

1.2.1.5 resume

Syntax

The following command is used to resume the currently mounted outward telnet connection: **resume** *no*

Parameter

Parameter	Description		
no	Number of the currently mounted telnet session that is checked through the where command		

Default

None

Command Mode

Global configuration

Usage Guidelines

The command can be used to resume the currently mounted outward telnet connection at the client side.

Example

switchA>teln	et 192.168.20.1				
Welcome to Multi-Protocol 2000 Series switch					
switchB>ena					
switchB#(press ctrl-shift-6+x)					
switchA> telnet 192.168.20.2					
Welcome to Multi-Protocol 2000 Series switch					
switchC>ena					
switchC#(press ctrl-shift-6+x)					
switchA>where					
NO.	Remote Addr	Remote Port	Local Addr	Local Port	

1	192.168.20.1	23	192.168.20.180	20034
2	192.168.20.2	23	192.168.20.180	20035

switchA>Resume 1

[Resuming connection 1 to 192.168.20.73 . . .]

(enter)

switchB#

After you enter **where** at switch A and the mounted outward connection of switch A is displayed. When entering **Resume1**, you will be prompted that connection 1 is resumed. The command prompts of switch B are displayed after the **Enter** key is pressed.

1.2.1.6 disconnect

Syntax

The following command is used to clear the currently mounted outward telnet session: **disconnect** *no*

Parameter

Parameter	Description
No	Number of the currently mounted telnet session that is checked through the where command

Default

None

Command Mode

Global configuration mode

Usage Guidelines

The command can be used to clear the currently mounted outward telnet connection at the client side.

Note:

The **disconnect** command is different from the **clear telnet** command. The former is used at the client side and clears the outward telnet connection. The latter is used at the server and clears the inward telnet connection.

Example

switchA>telnet 192.168.20.1

Welcome to Multi-Protocol 2000 Series switch

switchB>ena

switchB#(press ctrl-shift-6+x)

switchA> telnet 192.168.20.2

Welcome to Multi-Protocol 2000 Series switch

switchC>ena

switchC#(press ctrl-shift-6+x)

switchA>where

NO.	Remote Addr	Remote Port	Local Addr	Local Port
1	192.168.20.1	23	192.168.20.180	20034
2	192.168.20.2	23	192.168.20.180	20035

switchA>disconnect 1

<Closing connection to 192.168.20.1> <y/n>y

Connection closed by remote host.

switchA>

After you enter **where** at switch A and the mounted outward connection of switch A is displayed, enter **disconnect 1**. You will be prompted whether the connection of switch B is closed. After you enter **Y**, the connection is closed.

1.2.1.7 clear telnet

Syntax

The following is a command format to clear the telnet session at the server: **clear telnet** *no*

Parameter

Parameter	Description
по	Number of the telnet session that is displayed after the show telnet command is run

Default

None

Command Mode

EXEC mode

Usage Guidelines

The command is used to clear the telnet session at the server.

Example

clear telnet 1

The telnet session whose sequence number is 1 is cleared at the server.

1.2.1.8 show telnet

Syntax

The following is a command format to display the telnet session at the server: **show telnet**

Parameter

None

Default

None

Command Mode

All command modes except the user mode

Usage Guidelines

The command is used to display the telnet session at the server. The displayed information includes the sequence number, peer address, peer port, local address and local port.

Example

Switch# show telnet If you run the previous command, the result is shown as follows:

NO. Remote Addr Remote Port Local Addr Local Port

1	192.168.20.220	1097	192.168.20.240	23
2	192.168.20.180	14034	192.168.20.240	23

1.2.1.9 debug telnet

Syntax

The following is a format of the **debug** command for the telnet session:

debug telnet

Parameter

None

Default

None

Command Mode

EXEC mode

Usage Guidelines

The command is used to enable the telnet debug.

If the switch of the telnet debug is opened, the negotiation processes of all the incoming telnet sessions are printed on the window that the debug command invokes. The **debug telnet** command is different from the **telnet debug** command. The former is to export the debug information of the telnet session connected to the server. The latter is to export the debug information of the telnet session that the client originates.

Example

debug telnet

After using the comamnd, the debug information of the telnet session that is connected to the server is displayed.

1.2.2 Terminal Configuration Commands

The terminal configuration commands include:

- attach-port
- autocommand
- clear line
- connect

- disconnect
- exec-timeout
- length
- line
- location
- login authentication
- monitor
- no debug all
- password
- resume
- show debug
- show line
- terminal-type
- terminal monitor
- terminal width
- terminal length
- where
- width

1.2.2.1 attach-port

Syntax

The following command is to bind the telnet listening port to the **line vty** number and enable the telnet connection at a specific port generates **vty** according to the designated sequence number.

[no] attach-port PORT

Parameter

Parameter	Description
port	Listening port of the telnet server (3001-3999)

Default

None

Command Mode

Line configuration mode

Example

The following example shows how to bind listening port 3001 to line vty 2 3.

switch_config# line vty 2 3

switch_config_line#attach-port 3001

1.2.2.2 autocommand

Syntax

It is used to set the automatically-run command when user logs in to the terminal. The connection is cut off after the command is executed. autocommand *LINE*

no autocommand

Parameter

Parameter	Description
LINE	Command to be executed

Command Mode

Line configuration mode

Example

switch_conf#line vty 1

switch_conf_line#autocommand pad 123456

After you successfully log in, the host whose X.121 address is 123456 will be automatically padded.

1.2.2.3 clear line

Syntax

To clear the designated line, use the following command: **clear line** [*aux* | *tty* | *vty*] [*number*]

Parameter

Similar to the line command

Command Mode

EXEC mode

Example

switch#clear line vty 0

1.2.2.4 connect

Syntax

To connect the telnet server, use the following command: **connect** server-ip-addr/server-host-name {[/port port][/source-interface interface] [/local local-ip-addr]} [/script word]

Parameter

Parameter	Description
server-ip-addr/server-ho st-name	IP address of the server or the host name of the server
port	Port number
interface	Name of the interface where the connection is originated
local-ip-addr	Local IP address where the connection is originated
word	Name of the script

Command Mode

All configuration modes

Example

switch# connect 192.168.20.1

1.2.2.5 disconnect

Syntax

To delete the mounted telnet session, use the following command:

disconnect N

Parameter

Parameter	Description
N	Number of the mounted telnet session

Command Mode

All configuration modes

Example

switch#disconnect 1

1.2.2.6 exec-timeout

Syntax

To set the maximum spare time for the terminal, use the following command: [no] exec-timeout [*time*]

Parameter

Parameter	Description
<i>i</i>	Spare time whose unit is second.
time	Range: 0-864000.

Default

0 (No time-out limitation)

Command Mode

Line configuration mode

Example

Set the spare time of the line to one hour.

switch_config_line#exec-timeout 3600

1.2.2.7 length

Syntax

To set the line number on the screen of the terminal, use the following command: **[no] length** [*value*]

Parameter

Parameter	Description
value	A value between 0 and 512 The value 0 means there is no pause.

Default

24

Command Mode

Line configuration mode

1.2.2.8 line

Syntax

To enter the line configuration mode, use the following command: **line** [aux | console | tty | vty] [*number*]

Parameter

Parameter	Description
console	Monitoring line, which has only one number 0
vty	Virtual lines such as Telnet, PAD and Rlogin
number	Number in the line of the type

Command Mode

Global configuration mode

Example

The following example shows how to enter the line configuration mode of VTY 0 to 10. switch_config#line vty 0 10

1.2.2.9 location

Syntax

To recoded the description of the current line, use the following command. To return to the default setting, use the no form of this command.

location [LINE]

no location

Parameter

Parameter	Description
LINE	Description of the current line

Command Mode

Line configuration mode

1.2.2.10 login authentication

Syntax

To set line login authentication parameters, use the following command. To return to the default setting, use the no form of this command.

[no] line login authentication [default | WORD]

Parameter

Parameter	Description
Default	Default authentication mode
WORD	Name of the authentication list

Command Mode

Line configuration mode

Example

switch_conf_line#login authentication test

In the example, the authentication list of the line is set to **test**.

1.2.2.11 monitor

Syntax

To export the log and debugging information to the line, use the following command. To return to the default setting, use the no form of this command. [no] monitor

Parameter

None

Command Mode

Line configuration mode

Example

switch_config_line#monitor

1.2.2.12 no debug all

Syntax

To shut down all debugging output of the current VTY, use the following command. **no debug all**

Parameter

None

Command Mode

EXEC mode

Example

switch#no debug all

1.2.2.13 password

Syntax

To set the password for the terminal, use the following command. To return to the default setting, use the no form of this command. **password** {*password* | [encryption-type] *encrypted-password* }

no password

Parameter

Parameter	Description
password	Password configured on the line, which is entered in the plaintext form and whose maximum length is 30 bits.
[encryption-type] encrypted-password	encryption-type means the encryption type of the password. Currently, MY COMPANY products only support two encryption modes: 0 and 7. The number 0 means the password is not encrypted and the plaintext of password is directly entered. It is the same as the way of directly entering the password. The number 7 means the password is encrypted through an algorithm defined by MY COMPANY. You need to enter the encryption text for the encrypted password. The encryption text
	can be copied from the configuration files of other switches.

For password encryption, refer to the explanation of the commands **service** *password-encryption* and **enable password**.

Command Mode

Line configuration mode

Example

switch_conf#line vty 1

switch_conf_line#password test

The previous example shows the login password of VTY1 is set to test.

1.2.2.14 resume

Syntax

To resume the mounted telnet session, use the following command.

resume N

Parameter

Description

Ν

Number of the mounted telnet session

Command Mode

All configuration modes

Example

switch#resume 1

1.2.2.15 show debug

Syntax

To display all debugging information of the current VTY, use the following command. **show debug**

Parameter

None

Command Mode

EXEC mode or global configuration mode

Example

Switch# show debug http authentication debug is on http cli debug is on http request debug is on http response debug is on http session debug is on http erro debug is on http file debug is on TELNET: Incoming Telnet debugging is on

1.2.2.16 show line

Syntax

To display the status of the current effective line, use the following command. **show line** {[**console** | **vty**] [*number*]}}

Parameter

If there is no parameter followed, the status of all effective lines will be displayed.

The definition of other parameters is similar to that of the **line** command.

Command Mode

All configuration modes except the user mode

1.2.2.17 terminal length

Syntax

It is used to change the line number on the current terminal screen. The parameter can be obtained by the remote host. The rlogin protocol uses the parameter to notify the remote UNIX host. Run the **no terminal length** command to resume the default value: terminal length *length* no terminal length

Parameter

Parameter	Description
Length	Line number displayed on each screen
	Range: 0-512.

Default

Pause when 24 lines are displayed on the screen.

Command Mode

Global configuration mode

Usage Guidelines

The command is effective only to the current terminal. When the session is complete, the terminal attribute is invalid.

Example

switch#terminal length 40

Related Command

line

1.2.2.18 terminal monitor

Syntax

It is used to display the debugging output information and system faulty information at the current terminal. The no form of the command is used to disable the monitoring:

terminal monitor

no terminal monitor

Parameter

None

Default

The system monitoring port (console) is open by default. Other terminals are closed by default.

Command Mode

Global configuration

Usage Guidelines

The command is effective only to the current terminal. When the session is complete, the terminal attribute is invalid.

Example

switch#terminal monitor

Related Command

line

debug

1.2.2.19 terminal width

Syntax

In default settings, the switch is to export 80 characters in each line. If the default settings cannot meet your requirements, you can reset it. The parameter can be obtained by the remote host. Run the **terminal width** command to set the character number in each line. Run the **no terminal width** command to resume to the default value. **terminal width** *number* **no terminal width**

Parameter

Parameter	Description
number	Character number of each line

Default

Display 80 characters in each line

Command Mode

Global configuration

Usage Guidelines

The command is effective only to the current terminal. When the session is complete, the terminal attribute is invalid.

Example

switch#terminal width 40

Related Command

line

1.2.2.20 terminal-type

Syntax

To set the terminal type, use the following command. [no] terminal-type [name]

Parameter

Parameter	Description
Name	Terminal name Terminal types currently supported are VT100, ANSI and VT100J.

Default

ANSI

Command Mode

Line configuration mode

1.2.2.21 where

Syntax

To check the currently mounted outward telnet session at the client side, use the following command.

where

Parameter

None

Command Mode

All configuration modes

Example

switch#where

1.2.2.22 width

Syntax

To set the terminal width of the line, use the following command. To return to the default setting, use the no form of this command. [no] width [*value*]

Parameter

Parameter	Description
Value	A value between 0 and 256
	The value 0 means no execution.

Default

80

Command Mode

Line configuration mode

1.3 Maintenance and Debugging Tool Commands

1.3.1 Network Testing Tool Commands

1.3.1.1 ping

Syntax

It is used to test host accessibility and network connectivity. After the **ping** command is run, an ICMP request message is sent to the destination host, and then the destination host returns an ICMP response message.

ping [-a][-d][-f] [-i {source-ip-address}] [-m {source-interface}] [-j host1 [host2 host3 ...]]
[-k host1 [host2, host3 ...]] [-l length] [-n number] [-r hops] [-s tos] [-t ttl] [-v] [-w waittime]
[-b interval] [-c] host

Parameter

Parameter	Description
-а	Sets ping all along until it is been interrupted.
-d	Sets not apply the routing table.
-f	Sets the DF digit (message is not segmented).
	If the message required to be sent is larger than the MTU of the
	path, the message will be dropped by the routing switch on the
	path and the routing switch will then return an ICMP error
	message to the source host. If network performance has
	problems, one node in the network may be configured to a small

	MTU. You can use the –f option to decide the smallest MTU on the path.
	Default: No resetting
-i	Sets the source IP address of the message or the IP address of
	an interface.
	Default: Main IP address of the message-sending interface
source-ip-address	Source IP address adopted by the message
source-interface	Message takes the IP address of the source-interface interface
	as the source address.
-j host1 [host2 host3]	Sets the relaxation source route.
	Default: Not set
-k host1 [host2 host3]	Sets the strict source route
	Default: Not set
-l length	Sets the length of ICMP data in the message.
	Default: 56 bytes
-n number	Sets the total number of messages.
	Default: 5 messages
-r hops	Records routes.
	Up to hops routes are recorded.
	Default: not record
-s tos	Sets IP TOS of the message to tos .
	Default: 0
-t <i>tt</i> /	Sets IP TTL of the message to ttl .
	Default: 255
-V	Detailed output
-w waittime	Time for each message to wait for response
	Default: 2 seconds
-b interval	Sets the time interval of sending ping packet.
	Unit: 10ms; Value range: 0-65535; Default Value: 0.

host

Destination host

Command Mode

EXEC mode, global configuration mode

Usage Guidelines

The command supports that the destination address is the broadcast address or the multicast address. If the destination address is the broadcast address (255.255.255.255) or the multicast address, the ICMP request message is sent on all interfaces that support broadcast or multicast. The routing switch is to export the addresses of all response hosts. By pinging multicast address 224.0.0.1, you can obtain the information about all hosts in directly-connected network segment that support multicast transmission.

Press the **Q** or **q** key to stop the **ping** command.

Simple output is adopted by default.

Parameter	Description
!	A response message is received.
	Response message is not received in the timeout time.
U	The message that the ICMP destination cannot be reached is received.
Q	The ICMP source control message is received.
R	The ICMP redirection message is received.
т	The ICMP timeout message is received.
Р	The ICMP parameter problem message is received.

The statistics information is exported:

Parameter	Description
packets transmitted	Number of transmitted messages
packets received	Number of received response messages, excluding other ICMP messages
packet loss	Rate of messages that are not responded to
round-trip min/avg/max	Minimum/average/maximum time of a round trip (ms)

Example

switch#ping -I 10000 -n 30 192.168.20.125

PING 192.168.20.125 (192.168.20.125): 10000 data bytes

--- 192.168.20.125 ping statistics ---

30 packets transmitted, 30 packets received, 0% packet loss

round-trip min/avg/max = 50/64/110 ms

1.3.1.2 traceroute

Syntax

It is used to detect which routes have already reached the destination.

You can transmit to the destination the UDP packets (or ICMP ECHO packets) of different TTLs to confirm which routes have come to the destination. Each router on this path has to deduct 1 from the TTL value before forwarding ICMP ECHO packets. Speaking from this aspect, TTL is an effective hop count. When the TTL value of a packet is deducted to zero, the router sends back to the source system the ICMP timeout message.

By checking the ICMP timetout message sent back by intermedial routers, you can confirm the routers. At the arrival of the destination, the traceroute sends a UPD packet whose port ID is larger than 30000; the destination node hence can only transmit back a Port Unreachable ICMP message. This reception of this message means the arrival of destination.

traceroute [-i source-ip-address] [-m source-interface}] [-j host1 [host2 host3 ...]] [-k host1 [host2, host3 ...]] [-p port-number] [-q probe-count] [-r hops] [-t ttl] [-w waittime] [-x icmp] host

Parameter

Parameter	Description		
-i source-ip-address	Sets the source IP address of packet.		
-m source-interface	Sets the packet-transmitted port.		
-j host1 [host2 host3]	Sets the loose source route.Default: Not set		
-k host1 [host2 host3]	Sets the strict source route.		
	Default: Not set		
-p port-number	Sets the ID of destination port that transmits UDP packets. Default: 33434		
-q probe-count	Sets the number of packets that you detect each time.		
	Default: 3 packets		
-r hops	Records the routes (at most <i>hops</i> routes can be recorded).		
	Default: The routes are not recorded.		

-t <i>ttl</i>	Sets the IP TTL of packets as TTL.	
	Default: the minimum and maximum TTLs are 1 and 30 respectively.	
-w waittime	Means the time that each packet waits for echo.	
	Default: 3 seconds	
-x icmp	Sets the detection packet to be the ICMP ECHO packet.	
	Default: UDP packet	
host	Means the destination host.	

Command Mode

EXEC or global configuration mode

Usage Guidelines

The UDP packet is used for detection by default, but you can run **–x icmp** to replace it with ICMP ECHO for detection.

If you want to stop traceroute, press q or Q.

By default, the simple output information is as follows.

Parameter	Description			
!N	Receives an ICMP-route unreachable packet.			
ін	Receives an ICMP-host unreachable packet.			
!P	Receives an ICMP-protocol unreachable packet.			
!F	Receives an ICMP unreachable (need to be fragmented) packet.			
!S	Receive an ICMP unreachable (failing to detect the			
	source-station route) packet.			
The experted statistics information is as follows:				

The exported statistics information is as follows:

Parameter	Description	
hops max	Means the maximum detection hops (the threshold of ICMP).	
byte packets	Stands for the size of each detection packet.	

Example

switch#traceroute 90.1.1.10

traceroute to 90.1.1.10 (90.1.1.10), 30 hops max, 36 byte packets

1 90.2.2.1 0 ms 0 ms 0 ms

2 90.1.1.10 0 ms 0 ms 0 ms

1.3.2 Fault Diagnosis Commands

The chapter describes the commands used for fault diagnosis. All the following commands are used to detect the reason of the fault. You can use other commands to remove the fault, such as the **debug** command.

The fault diagnosis commands include:

- logging
- logging buffered
- logging console
- logging facility
- logging monitor
- logging on
- logging trap
- logging command
- logging source-interface
- logging history alerts
- logging history critical
- logging history debugging
- logging history emergencies
- logging history errors
- logging history informational
- logging history notifications
- logging history warnings
- logging history rate-limit
- logging history size
- service timestamps
- clear logging
- show break
- show debug
- show logging

1.3.2.1 logging

Syntax

To record the log information to the **syslog** server, use the following command. To return to the default setting, use the no form of this command.

logging A.B.C.D no logging A.B.C.D

Parameter

Parameter	Description	
A.B.C.D	IP address of the syslog server	
level	Level of log information on the server Refer to table 1.	

Default:

The log information is not recorded to the server.

Command Mode

Global configuration mode

Usage Guidelines

The **logging** command is used to record the log information to the designated **syslog** server. It can be used for many times to designate multiple **syslog** servers.

Example

logging 192.168.1.1 errors

Related Command

logging trap

1.3.2.2 logging buffered

Syntax

To record the log information to the memory of the switch, use the following command. To return to the default setting, use the no form of this command. **logging buffered** [*size* | *level* | *dump*]

no logging buffered

Parameter

Parameter	Description	
size	Size of memory cache	

	Value range: 4096-2147483647	
	Unit: byte	
level	Information level of the log recorded to memory cache	
	Refer to table 1.	
dump	When the system has abnormality, the information in the current memory is currently recorded to the flash and the information is resumed after the system is restarted.	

Default

The information is not recorded to the memory cache.

Command Mode

Global configuration mode

Usage Guidelines

The command records the log information to the memory cache of the switch. The memory cache is circularly used. After the memory cache is fully occupied, the latter information will cover the previous information.

You can use the **show logging** command to display the log information recorded in the memory cache of the switch.

Do not use big memory for it causes the shortage of memory.

Prompt	Level	Description	Syslog Definition
emergencies	0	System unusable	LOG_EMERG
alerts	1	Immediate action needed	LOG_ALERT
critical	2	Critical conditions	LOG_CRIT
errors	3	Error conditions	LOG_ERR
warnings	4	Warning conditions	LOG_WARNING
notifications	5	Normal but significant condition	LOG_NOTICE
informational	6	Informational messages only	LOG_INFO
debugging	7	Debugging messages	LOG_DEBUG

Table 1 Level of log recording

Related Command

clear logging show loggin

1.3.2.3 logging console

Syntax

Run the command **logging console** to control the information volume displayed on the console.

Run the command **no logging console** to forbid the log information to be displayed on the console:

logging console level

no logging console

Parameter

Parameter	Description	
level	Information level of the logs displayed on the console	
	Refer to table 2.	

Default

The log level displayed on the console port is debugging by default.

Command Mode

Global configuration mode

Usage Guidelines

After the information level is specified, information of this level or the lower level will be displayed on the console.

Run the command **show logging** to display the currently configured level and the statistics information recorded in the log.

Prompt	Level	Description	Syslog Definition
emergencies	0	System unusable	LOG_EMERG
alerts	1	Immediate action needed	LOG_ALERT
critical	2	Critical conditions	LOG_CRIT

Table 2Level of log recording

errors	3	Error conditions	LOG_ERR
warnings	4	Warning conditions	LOG_WARNING
notifications	5	Normal but significant condition	LOG_NOTICE
informational	6	Informational messages only	LOG_INFO
debugging	7	Debugging messages	LOG_DEBUG

Example

logging console alerts

Related Command

logging facility show logging

1.3.2.4 logging facility

Syntax

Run the command **logging facility** to configure to record specified error information. To restore to **local7**, run the command **no logging facility**. **logging facility** *facility-type* **no logging facility**

Parameter

Parameter	Description	
facility-type	Facility type	
	Refer to table 3.	

Default

local7

Command Mode

Global configuration

Usage Guidelines

Туре	Description	
auth	Authorization system	
cron	Cron facility	
daemon	System daemon	
kern	Kernel	
local0-7	Reserved for locally defined messages	
lpr	Line printer system	
mail	Mail system	
news	USENET news	
sys9	System use	
sys10	System use	
sys11	System use	
sys12	System use	
sys13	System use	
sys14	System use	
syslog	System log	
user	User process	
ииср	UNIX-to-UNIX copy system	

Table 3 Facility type

Example

logging facility kern

Related Command

logging console

1.3.2.5 logging monitor

Syntax

Run the command logging monitor to control the information volume displayed on the

terminal line.

Run the command **no logging monitor** to forbid the log information to be displayed on the terminal line.

logging monitor level

no logging monitor

Parameter

Parameter	Description	
level	Information level of the logs displayed on the terminal line	
	Refer to table 4.	

Default

Debugging

Command Mode

Global configuration mode

Usage Guidelines

Prompt	Leve	Description	Syslog Definition
emergencies	0	System is unusable	LOG_EMERG
alerts	1	Immediate action	LOG_ALERT
		needed	
critical	2	Critical conditions	LOG_CRIT
errors	3	Error conditions	LOG_ERR
warnings	4	Warning conditions	LOG_WARNING
notifications	5	Normal but significant	LOG_NOTICE
		condition	
informational	6	Informational	LOG_INFO
		messages only	
debugging	7	Debugging messages	LOG_DEBUG

Table 4 Level of log recording

Example

logging monitor errors

Related Command

terminal monitor

1.3.2.6 logging on

Syntax

Run the command **logging on** to control the recording of error information. Run the command **no logging on** to forbid all records. **logging on no logging on**

Parameter

None

Default

logging on

Command Mode

Global configuration mode

Example

switch_config# logging on

switch_config# ^Z

switch#

Configured from console 0 by DEFAULT

switch# ping 192.167.1.1

switch#ping 192.167.1.1

PING 192.167.1.1 (192.167.1.1): 56 data bytes

!!!!!

--- 192.167.1.1 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0/4/10 ms

switch#IP: s=192.167.1.111 (local), d=192.167.1.1 (FastEthernet0/0), g=192.167.1.1, len=84, sending IP: s=192.167.1.1 (FastEthernet0/0), d=192.167.1.11 (FastEthernet0/0), len=84,rcvd IP: s=192.167.1.11 (local), d=192.167.1.1 (FastEthernet0/0), g=192.167.1.1, len=84, sending IP: s=192.167.1.1 (FastEthernet0/0), d=192.167.1.11 (FastEthernet0/0), len=84,rcvd IP: s=192.167.1.11 (local), d=192.167.1.1 (FastEthernet0/0), g=192.167.1.1, len=84, sending IP: s=192.167.1.1 (FastEthernet0/0), d=192.167.1.11 (FastEthernet0/0), g=192.167.1.1, len=84, sending IP: s=192.167.1.11 (local), d=192.167.1.1 (FastEthernet0/0), g=192.167.1.1, len=84, sending IP: s=192.167.1.11 (local), d=192.167.1.1 (FastEthernet0/0), g=192.167.1.1, len=84, sending IP: s=192.167.1.1 (FastEthernet0/0), d=192.167.1.111 (FastEthernet0/0), len=84,rcvd IP: s=192.167.1.11 (local), d=192.167.1.1 (FastEthernet0/0), g=192.167.1.1, len=84, sending IP: s=192.167.1.11 (local), d=192.167.1.1 (FastEthernet0/0), g=192.167.1.1, len=84, sending

switch_config# no logging on

switch_config# ^Z
switch#
switch# ping 192.167.1.1
PING 192.167.1.1 (192.167.1.1): 56 data bytes
!!!!!
--- 192.167.1.1 ping statistics --5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0/4/10 ms

Related Command

logging logging buffered logging monitor logging console

1.3.2.7 logging trap

Syntax

Run the command **logging trap** to control the information volume recorded to the syslog server.

Run the command no logging trap to forbid the information to be recorded to the syslog

server.

logging trap *level* no logging trap

Parameter

Parameter	Description
level	Information level of the logs displayed on the syslog server
	Refer to table 5.

Default

Informational

Command Mode

Global configuration mode

Usage Guidelines

Table 5	Level of log recording
Tuble 0	Lover of log recording

Prompt	Lev el	Description	Syslog Definition
emergencies	0	System is unusable	LOG_EMERG
alerts	1	Immediate action needed	LOG_ALERT
critical	2	Critical conditions	LOG_CRIT
errors	3	Error conditions	LOG_ERR
warnings	4	Warning conditions	LOG_WARNING
notifications	5	Normal but significant condition	LOG_NOTICE
informational	6	Informational messages only	LOG_INFO
debugging	7	Debugging messages	LOG_DEBUG

Example

logging 192.168.1.1

logging trap notifications

Related Command

logging

1.3.2.8 logging command

Syntax

To enable the command execution recording, run **logging command**. After this function is opened, a log will be generated for each of all entered commands, in which the line to execute this command, the command line, the execution result, the login line and the login address will be recorded.

You can use **no logging command** to disable this function.

Parameter

None

Default

no logging command

Command Mode

Global configuration mode

Example

Switch_config#logging command

Switch_config#Jul 11 15:26:56 %CMD-6-EXECUTE: `logging command ` return 0, switch(vty 0, 192.168.25.42).

Related Command

logging

1.3.2.9 logging source-interface

Syntax

This command is used to set the source port of log exchange. You can use **no logging source-interface** to disable this function.

Parameter

None

Default

no logging source-interface

Command Mode

Global configuration mode

Example

Switch_config# logging source-interface vlan 1

Related Command

logging

1.3.2.10 logging history alerts

Syntax

This command is used to set the level of the historical log table to **alerts** (need to act immediately).

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history alerts

Related Command

logging

1.3.2.11 logging history critical

Syntax

This command is used to set the level of the historical log table to critical.

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history critical

Related Command

logging

1.3.2.12 logging history debugging

Syntax

This command is used to set the level of the historical log table to **debugging**.

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history debugging

Related Command

logging

1.3.2.13 logging history emergencies

Syntax

This command is used to set the level of the historical log table to **emergencies** (system unavailable).

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history emergencies

Related Command

logging

1.3.2.14 logging history errors

Syntax

This command is used to set the level of the historical log table to errors.

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history errors

Related Command

logging

1.3.2.15 logging history informational

Syntax

This command is used to set the level of the historical log table to informational.

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history informational

Related Command

logging

1.3.2.16 logging history notifications

Syntax

This command is used to set the level of the historical log table to **notifications** (normal but important condition).

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history notifications

Related Command

logging

1.3.2.17 logging history warnings

Syntax

This command is used to set the level of the historical log table to warnings.

Parameter

None

Default

logging history warnings

Command Mode

Global configuration mode

Example

Switch_config#logging history warnings

Related Command

logging

1.3.2.18 logging history rate-limit

Syntax

This command is used to set the log output rate.

Parameter

Parameter	Description
<1-512>	Stands for the number of logs which are exported each second.

Default

logging history rate-limit 0

Command Mode

Global configuration mode

Example

Switch_config#logging history rate-limit 256

Related Command

logging

1.3.2.19 logging history size

Syntax

This command is used to set the number of entries in the historical log table.

Parameter

Parameter	Description
<0-500>	Stands for the number of historical log entries.

Default

logging history size 0

Command Mode

Global configuration mode

Example

Switch_config#logging history size 256

Related Command

logging

1.3.2.20 service timestamps

Syntax

Run the command **service timestamps** to configure the time stamp that is added when the system is debugged or records the log information.

Run the command **no service timestamps** to cancel the time stamp that is added when the system is debugged or records the log information.

service timestamps [log|debug] [*uptime*| *datetime*] no service timestamps [log|debug]

Parameter

Parameter	Description
log	Adds the time stamp before the log information.
debug	Adds the time stamp before the debug information.
uptime	Duration between the startup of the switch and the current time
datetime	Real-time clock time

Default

Service timestamps log date Service timestamps debug date

Command Mode

Global configuration mode

Usage Guidelines

The time stamp in the **uptime** form is displayed like HHHH:MM:SS, meaning the duration from the start-up of the switch to the current time.

The time stamp in the **date** form is displayed like YEAR-MON-DAY HH:MM:SS, meaning the real-time clock time.

Example

Service timestamps debug uptime

1.3.2.21 clear logging

Syntax

It is used to clear the log information recorded in the memory cache. **clear logging**

Parameter

None

Command Mode

EXEC mode

Related Command

logging buffered show logging

1.3.2.22 show break

Syntax

It is used to display the information about abnormal breakdown of the switch. **show break**

Parameter

None

Default

None

Command Mode

EXEC mode

Usage Guidelines

It is used to display the information about abnormal breakdown of the switch, helping to find the cause of the abnormality.

Example

switch#show break Exception Type:1400-Data TLB error BreakNum: 1 s date: 2000-1-1 time: 0:34:6 r0 r1 r2 r3 r4 r5 r6 00008538-01dbc970-0054ca18-00000003-80808080-fefefeff-01dbcca1r7 r8 r9 r10 r12 r11 r13 0000000-00009032-0000000-7ffffff0-00008588-44444444-0054c190r14 r15 r16 r17 r18 r19 r20

r21 r22 r23 r24 r25 r26 r27 0000000-000000a-0000001-0000000-0000000-004d6ce8-01dbd15cr28 r29 r30 r31 spr8 spr9 ip 0000002-00467078-00010300-00000300-00000310-00008588-00000370-Variables : 00008538-4444444-01dbd15c-01dbcaac-00000002-00000000-004d6ce8-01dbca18-00008538 --- do_chram_mem_sys_addr---bspcfg.o 0001060c --- subcmd---cmdparse.o---libcmd.a 000083e4 --- do_chram_mem_sys---bspcfg.o 0000fb24 --- lookupcmd---cmdparse.o---libcmd.a 0000f05c --- cmdparse---cmdparse.o---libcmd.a 003e220c --- vty---vty.o---libvty.a 00499820 --- pSOS_qcv_broadcast---ksppc.o---os\libsys.a The whole displayed content can be divided into six parts:

1 RROR:file function.map not found

The prompt information means that the system has not been installed the software **function.map**, which does not affect the system running.

If the version of the software **function.map** is not consistent with that of the switch, the system prompts that the version is not consistent.

2 Exception Type—Abnormal hex code plus abnormal name

3 BreakNum

It is the current abnormal number. It means the number of abnormalities that the system has since it is powered on in the latest time. It is followed by the time when the abnormality occurs.

4 Content of the register

The common content of the register is listed out.

5 Variable area

The content in the stack is listed out.

6 Calling relationship of the number

If the **map** file is not installed on the system, only the function's address is displayed. If the **map** file is installed on the system, the corresponding function name, **.o** file name and **.a** file name are displayed.

The calling relationship is from bottom to top.

1.3.2.23 show debug

Syntax

It is used to display all the enabled debugging options of the switch. **show debug**

Parameter

None

Command Mode

EXEC mode

Example

switch# show debug

Crypto Subsystem:

Crypto Ipsec debugging is on

Crypto Isakmp debugging is on

Crypto Packet debugging is on

Related Command

debug

1.3.2.24 show logging

Syntax

It is used to display the state of logging (syslog). **show logging**

Parameter

None

Command Mode

EXEC mode

Usage Guidelines

It is used to display the state of logging (syslog), including the login information about the console, monitor and syslog.

Example

switch# show logging

Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)

Console logging: level debugging, 12 messages logged

Monitor logging: level debugging, 0 messages logged

Buffer logging: level debugging, 4 messages logged

Trap logging: level informations, 0 message lines logged

Log Buffer (4096 bytes):

2000-1-4 00:30:11 Configured from console 0 by DEFAULT

2000-1-4 00:30:28 User DEFAULT enter privilege mode from console 0, level = 15

Related Command

clear logging

1.3.3 SSH Configuration Commands

1.3.3.1 ip sshd enable

Syntax

ip sshd enable no ip sshd enable

Parameter

None

Default

Disable

Usage Guidelines

It is used to generate the rsa encryption key and then monitor the connection to the ssh server. The process of generating encryption key is a process of consuming the calculation time. It takes one or two minutes.

Command Mode

Global configuration mode

Example

In the following example, the SSH service is generated.

device_config#ip sshd enable

1.3.3.2 ip sshd timeout

Syntax

ip sshd timout *time-length* no ip timeout

Parameter

Parameter	Description
time-length	Maximum time from the establishment of connection to the authentication
	approval
	Value range: 60-65535

Default

180 seconds

Usage Guidelines

To prevent the illegal user from occupying the connection resources, the connections that are not approved will be shut down after the set duration is exceeded.

Command Mode

Global configuration mode

Example

In the following example, the timeout time is set to 360 seconds:

device_config#ip sshd timeout 360

1.3.3.3 ip sshd auth-method

Syntax

ip sshd auth-method *method* no sshd auth-method

Parameter

Parameter	Description
method	Sets authentication method list. The length of the authentication method's
	name is no more than 20 characters.

Default

The **default** authentication method list is used.

Usage Guidelines

The ssh server uses the authentication method list of the login type.

Command Mode

Global configuration mode

Example

In the following example, an **auth-ssh** authentication method list is configured and it is applied to the ssh server:

device_config#aaa authentication login auth-ssh local

device_config#ip sshd auth-method auth-ssh

1.3.3.4 ip sshd access-class

Syntax

ip sshd access-class access-list no ip sshd access-class

Parameter

Parameter	Description	
access-list	Standard IP access list. The length of the access list's name is no more	
	than 20 characters.	

Default

No access control list

Usage Guidelines

It is used to configure the access control list for the ssh server. Only the connections complying with the regulations in the access control list can be approved.

Command Mode

Global configuration mode

Example

In the following example, an **ssh-accesslist** access control list is configured and applied in the ssh server:

device_config# ip access-list standard ssh-accesslist

device_config_std_nacl#deny 192.168.20.40

device_config#ip sshd access-class ssh-accesslist

1.3.3.5 ip sshd auth-retries

Syntax

ip sshd auth-retries *times* no ip sshd auth-retries

Parameter

Parameter	Description
times	Maximum re-authentication times
	Value range: 0-65535

Default

6 times

Usage Guidelines

The connection will be shut down when the re-authentication times exceeds the set times.

Command Mode

Global configuration mode

Example

In the following example, the maximum re-authentication times is set to five times: device_config#ip sshd auth-retries 5

1.3.3.6 ip sshd clear

Syntax

ip sshd clear ID

Parameter

Parameter	Description
ID	Number of the SSH connection to the local device
	Value range: 0-65535

Default

None

Usage Guidelines

It is used to mandatorily close the incoming ssh connection with the specified number. You can run the command **show ip sshd line** to check the current incoming connection's number.

Command Mode

Global configuration mode

Example

In the following example, the No.0 incoming connection is mandatorily closed:

device_config#ip sshd clear 0

1.3.3.7 ip sshd silence-period

Syntax

ip sshd silence-period *time-length* no ip sshd silence-period

Parameter

Parameter	Description

time-length Means

Means the time of the silence, which ranges from 0 to 3600.

Default

60s

Usage Guidelines

This command is used to set the login silence period. After the accumulated login failures exceed a certain threshold, the system regards that there exist attacks and disables the SSH service in a period of time, that is, the system enters the login silence period.

The silence period is set by the **ip sshd silence-period** command. The default silence period is 60 seconds. The allowable login failures are set by the **ip sshd auth-retries** command, whose default value is 6.

Command Mode

Global configuration mode

Example

The following example shows how to set the silence period to 200 seconds. switch_config#ip sshd silence-period 200

1.3.3.8 ip sshd sftp

Syntax

ip sshd sftp no ip sshd sftp

Parameter

None

Default

None

Usage Guidelines

This command is used to enable the SFTP function. The SFTP function refers to the secure file transmission system based on SSH, of which the authentication procedure and data transmission are encrypted. Though it has low transmission efficiency, network security is highly improved.

Command Mode

Global configuration mode

Example

The following example shows how to enable the SFTP function. switch_config#ip sshd sftp

1.3.3.9 ip sshd save

Syntax

ip sshd save no ip sshd save

Parameter

None

Default

None

Usage Guidelines

This command is used to save the initial key. When the SSH server is restarted, the key will be first read from the flash; if the key reading is successful, the recalculation of key will be avoided and the startup time will be shortened.

Command Mode

Global configuration mode

Example

The following example shows how to enable the key protection function. switch_config#ip sshd save

1.3.3.10 ip sshd disable-aes

Syntax

ip sshd disable-aes no ip sshd disable-aes

Parameter

None

Default

The AES encryption algorithm is forbidden.

Usage Guidelines

This command is used to decide whether to use the AES algorithm during the encryption algorithm negotiation. The AES algorithms such as aes128-cbc and aes256-cbc are not used by default.

Command Mode

Global configuration mode

Example

The following example shows how to disable the AES encryption algorithm. switch_config#ip sshd disable-aes

1.3.3.11 **ssh**

Syntax

ssh -l userid -d destIP [-c {des|3des|blowfish }] [-o numberofpasswdprompts] [-p port] [-v
{1|2}] [-s password]

Parameter

Parameter	Description
–l userid	User account on the server
–d destl	Destination IP address in the dotted decimal system
-0	Re-authentication times after the first authentication fails
numberofpasswdpr	Actual re-authentication times is the set value plus the smallest value set
ompts	on the server. Its default value is three times.
	Value range: 0-65535
-p port	Port number that the server monitors
	Its default value is 22.
	Value range: 0-65535

-c	Encryption algorithm used during communication
{des 3des blowfish}	The encryption algorithm is 3des by default.
-v version	Specified version No.
- s password	Set the password

Default

None

Usage Guidelines

The command is used to create a connection with the remote ssh server.

Command Mode

Privileged mode

Example

In the following example, a connection with the ssh server whose IP address is 192.168.20.41 is created. The account is **zmz** and the encryption algorithm is **blowfish**:

device#ip ssh -l zmz -d 192.168.20.41 -c blowfish

1.3.3.12 show ssh

Syntax

show ssh

Parameter

None

Default

None

Usage Guidelines

It is used to display the sessions on the ssh server.

Command Mode

Privileged mode

Example

In the following example, the sessions on the ssh server are displayed: device#show ssh

1.3.3.13 show ip sshd

Syntax

show ip sshd

Parameter

None

Default

None

Usage Guidelines

It is used to display the current state of the ssh server.

Command Mode

Privileged mode

Example

In the following example, the current state of the ssh server is displayed: device#show ip sshd

2 Network Management Configuration Commands

2.1 Network Management Configuration Commands

2.1.1 SNMP Commands

SNMP commands are listed below:

- snmp-server community
- snmp-server contact
- snmp-server engineID local
- snmp-server group
- snmp-server host/hostv6
- snmp-server location
- snmp-server packetsize
- snmp-server queue-length
- snmp-server trap-source
- snmp-server trap-timeout
- snmp-server user
- snmp-server view
- snmp-server source-addr
- snmp-sever udp-port
- snmp-server encryption
- Snmp-server trap-add-hostname
- snmp-server trap-logs
- snmp-server set-snmp-dos-max
- snmp-server keep-alive
- snmp-server necode
- snmp-server event-id
- snmp-server getbulk-timeout
- snmp-server getbulk-delay
- show snmp
- debug snmp

2.1.1.1 snmp-server community

Syntax

To set the community access string of the accessible SNMP protocol, run snr	snmp-server
---	-------------

community in global configuration mode. To delete the specified community character string, use the no form of this command.

snmp-server community [0|7] string [view view-name] [ro | rw] [word]

no snmp-server community string

no snmp-server community

Parameters

Parameters	
	Description
0	Sets the community string of the text.
7	Sets the encrypted public string of the text.
string	Means the community string of the accessible SNMP protocol, which is similar to the password.
view view-name	(optional) stands for the previously defined view's name. In this view, the MIB objects, which are effective to the community, are defined.
ro	(Optional) Designates the read-only permission. Those authorized workstations can only read the MIB objects.
rw	(Optional) Designates the read-write permission. Those authorized workstations can read and modify the MIB objects.
word	(optional) Specifies the name of IP ACL of the SNMP proxy, which can be accessed by the community string.

Default

By default, the SNMP community string allows the read-only permission to all objects.

Command Mode

Global configuration mode

Usage Guidelines

The following command shows how to delete a designated community. **no snmp-server community** *string* The following command shows how to delete all communities. **no snmp-server community**

Example

The following example shows how to distribute the "comaccess" string to SNMP, allow the read-only access and designate IP ACL to use the community string.

snmp-server community comaccess ro allowed

The following example shows how to distribute the "mgr" string to SNMP, allow to read and write the objects in the Restricted view

snmp-server community mgr view restricted rw

The following example shows how to delete the "comaccess" community.

no snmp-server community comaccess

Related Command

access-list snmp-server view

2.1.1.2 snmp-server contact

Syntax

To set the information about the contact person in a management node, run **snmp-server contact text** command in the global configuration mode. To delete the contact information, use the no form of this command. **snmp-server contact** *text*

no snmp-server contact

Parameters

Parameters	Description
text	Means the string of the information about the contact person.

Default

The information about contact person is not set.

Command Mode

Global configuration mode

Usage Guidelines

It corresponds to the sysContact of the MIB variable in the System group.

Example

The following example shows the information about the contact person in a node.

snmp-server contact Dial_System_Operator_at_beeper_#_27345

2.1.1.3 snmp-server engineID local

Syntax

To configure the SNMP engine ID of the local agent, run **snmp-server engineID local** command in the global configuration mode. To remove the SNMP engine ID of the local agent, use the no form of this command. **snmp-server engineID local** *engineID*

no snmp-serverr engineID local engineID

Parameters

Parameters	Description
engineID	SNMP engineID

Default

The SNMP engineID is not set.

Command Mode

Global configuration mode

Usage Guidelines

The command is used to configure the SNMP engine ID of the local agent.

Example

snmp-server engineID local 80000cf80300e00f3f56e3

2.1.1.4 snmp-server group

Syntax

To create or update a snmp-server group in global configuration mode, run the following first command; to cancel this SNMP group, run the following second command. Format of the command is as follows:

snmp-server group [groupname { v3 [auth | noauth | priv]}][read readview][write writeview] [notify notifyview]
[access access-list]

no snmp-server group groupname

Parameters

Parameters	Description
groupname	Stands for the name of the created or modified SNMP group.
v3	Means the version ID of the SNMP protocol.
auth noauth priv	Stands for the lowest security level of users in the SNMPv3 group.
readview	Means the access permission of GET operations, which is defined by the view.
writeview	Means the access permission of SET operations, which is defined by the view.
notifyview	Stands for the access permission during the transmission of Trap packets, which is defined by the view.
access-list	Allows users in the SNMP group to get through the IP access control list.

Default

The readview allows all leaves of the Internet sub-tree to be accessed.

Command mode:

Global configuration mode

Usage Guidelines

The SNMP group is used to designate the access permission of the users in this group.

Example

In the following example, an SNMP group is set and named as setter, the version ID of the SNMP protocol is 3, the security level is authentication and encryption, and the view that is accessed by the set operation is v-write.

snmp-server group setter v3 priv write v-write

Related Command

snmp-server view

snmp-server user

2.1.1.5 snmp-server [host|hostv6]

Syntax

To specify the receiver of SNMP trap operation, run the first of the following commands in global configuration mode. To cancel this designated host, run the following second command.

Parameters

Parameters	Description
host hostv6	Sets the IPv4 or IPv6 trap host.
host	Means the host's name or the address of the Internet.
	Uses bipv4 address in host
	Uses ipv6 address in hostv6
[udp-port port-num]	(Optional) Specifies the ID of the UDP port, which transmits the traps.
[permit deny event-id]	(Optional) Allows or blocks to transmit a designated event.
{version [v1 v2c v3]}	(Optional) Means the version ID of the SNMP protocol, which is used to transmit traps.
[informs traps]	(Optional) Specifies the type of trap for version V2C.
	Informs: means the type of trap is "informs".
	Traps: means the type of trap is "traps".
[auth noauth]	Specifies the trap authentication mode for version V3.
	auth: authentication
	noauth: non-authentication
community-string/user	Means a community string in version 1 and version 2c which is similar to the password and sent with the trap operations or

		means the username in version 3.
[authentication	I	(optional) if no trap is designated, all generated traps will be sent
configure snmp]		to the host.
		authentication: allows to transmit those authentication-error
		traps.
		configure: allows to transmit the SNMP-configure traps.
		snmp: allows to transmit the SNMP traps.

Default

This command is invalid in default settings. That is to say, no trap will be sent by default. If no command with any key word is entered, all traps with v1 standard are not sent by default.

Command Mode

Global configuration mode

Usage Guidelines

If this command is not entered, the traps will not be sent. In order to enable a switch to send the SNMP traps. You must run **snmp-server host**. If the keyword "trap-type" is not contained in this command, all kinds of traps of this host will be activated. If the keyword "trap-type" is contained in this command, all trap types related with this keyword are activated. You can specify multiple trap types in this command for each host.

If you designate multiple **snmp-server host** commands on the same host, the SNMP trap messages that are sent to the host will be decided by the community string and the trap type filtration in this command. (Only one trap type can be configured for a same host and a same community string).

The availability of the **trap-type** option depends on the OLT type and the attributes of routing software, which is supported by this OLT.

Example

The following example shows how to transmit the RFC1157-defined SNMP traps to host 10.20.30.40. The community string is defined as comaccess.

snmp-server host 10.20.30.40 comaccess snmp

The following example shows that the OLT uses the public community string to send all types of traps to host 10.20.30.40.

snmp-server host 10.20.30.40 public

The following example shows that only the authentication traps are effective and can be sent to host bob.

snmp-server host bob public authentication

Related Command

snmp-server queue-length snmp-server trap-source snmp-server trap-timeout snmp-server event-id snmp-server user

2.1.1.6 snmp-server location

Syntax

To set the location string of a node, run the first one of the following two commands in global configuration mode. To cancel this designated host, run the following second command.

snmp-server location text

no snmp-server location

Parameters

Parameters	Description
text	The location string of a node is not set by default.

Default

The location string of a node is not set by default.

Command Mode

Global configuration mode

Usage Guidelines

It corresponds to the sysLocation of the MIB variable in the System group.

Example

The following example shows how to define the actual location of a OLT.

snmp-server location Building_3/Room_214

Related Command

snmp-server contact

2.1.1.7 snmp-server packetsize

Syntax

To define the maximum size of the SNMP packet when the SNMP server receives requests or responds, run the following first command in global configuration mode.

snmp-server packetsize byte-count

no snmp-server packetsize

Parameters

Parameters	Description
byte-count	Stands for the integer bytes between 484 and 17940. The default value is 3000 bytes.

Default

3000 bytes

Command Mode

Global configuration mode

Usage Guidelines

The command corresponds to the sysLocation of the MIB variable in the System group.

Example

The following example shows how to set up a filter to filter those packets whose maximum length is 1024 bytes. snmp-server packetsize 1024

Related Command

snmp-server queue-length

2.1.1.8 snmp-server queue-length

Syntax

To set the queue length for each trap host, run the following first command in global configuration mode. **snmp-server queue-length no snmp-server queue-length**

Parameters

Parameters	Description
length	Stands for the number of trap events which can be saved in the queue (1-1000).

Default

10 trap events.

Command Mode

Global configuration mode

Usage Guidelines

This command is used to set the queue length for each trap host. Once the trap messages are successfully transmitted, the switch will empty the queue.

Example

The following example shows how to set up a message queue which can capture four events.

snmp-server queue-length 4

Related Command

snmp-server packetsize

2.1.1.9 snmp-server trap-source

Syntax

To designate an interface to be the source address of all traps, run the following first command in global configuration mode. To cancel this interface, run the following second command.

snmp-server trap-source interface

no snmp-server trap-source

Parameters

Parameters	Description
interface	Stands for the interface where SNMP traps generate. The
	parameters include the interface type and interface ID of the
	syntax mode of specific platform.

Default

The interface is not designated.

Command Mode

Global configuration mode

Usage Guidelines

When the SNMP server sends out a SNMP trap on whichever interface, the SNMP trap shall carry a trap address. If you want to use the trap address for tracking, you can use this command.

Example

The following example shows how to designate interface vlan1 as the source address of all traps. snmp-server trap-source vlan1

Related Command

snmp-server queue-length snmp-server host

2.1.1.10 snmp-server trap-timeout

Syntax

To set the timeout value of retransmitting traps, run the following first command in global configuration mode. **snmp-server trap-timeout** seconds **no snmp-server trap-timeout**

Parameters

Parameters	Description	
seconds	Means an interval for retransmitting traps, whose unit is second (1-1000).	

Default

30 seconds

Command Mode

Global configuration mode

Usage Guidelines

Before OLT software tries to send traps, it is used to look for the route of destination address. If no routes exists, traps will be saved in the retransmission queue. The **server trap-timeout** command decides the retransmission interval.

Example

The following example shows how to set the retransmission interval to 20 seconds:

snmp-server trap-timeout 20

Related Command

snmp-server host

snmp-server queue-length

2.1.1.11 snmp-server user

Syntax

To create or update an**snmp-server user** in global configuration mode, run the following first command; to cancel this SNMP user, run the following second command. If the remote parameter is designated, a remote user will be configured; when a remote user is configured, the SNMP engine ID that corresponds to the IP address of this management station must exist. Format of the command is as follows:

snmp-server user username groupname { v3 [encrypted | auth] [md5 | sha] auth-password }

no snmp-server user username groupname v3

Parameters

Parameters	Description
username	Stands for the name of the created or modified SNMP user.
groupname	Stands for the group where the user is.
v3	Stands for the SNMP version.
[encrypted auth]	Encryption type:
	Encrypted: packet encryption
	auth: packet authentication

{md5 sha }	Means the method of encryption authentication.
auth-password	Stands for the authentication password of the user. If this
	password is localized, it will be used as the authentication key
	and the encryption key of SNMPv3.

Default

None

Command Mode

Global configuration mode

Usage Guidelines

This command is used to set the username and the password.

Example

In the following example, an SNMP user is created, whose name is set-user and which belongs to setter, the version of the SNMP protocol is version 3, the security level is authentication and encryption, the password is 12345678, and MD5 is used as the harsh algorithm.

snmp-server user set-user setter v3 encrypted auth md5 12345678

Related Command

snmp-server view

snmp-server group

2.1.1.12 snmp-server view

Syntax

To create or update a MIB view, run the first one of the following two commands in global configuration mode. To cancel a view in the SNMP server, run the second one of the following two commands.

snmp-server view view-name oid-tree {included | excluded}

no snmp-server view view-name

Parameters

Parameters	Description
view-name	Updates or creates the label of a view.
oid-tree	Means the object IDs of the ASN.1 sub-tree that must be contained or excepted from a view. The identifier sub-tree is used to designate a numeral-contained string, e.g., 1.3.6.2.4 or a system sub-tree. The sub-tree name can be found in all MIB trees. Means the view type. The parameter "included" or "excluded" must be specified.
included excluded	Means the view type. The parameter "included" or "excluded" must be specified.

Default

None

Command Mode

Global configuration mode

Usage Guidelines

If other SNMP commands need a view as a parameter, you can use this command to create a view. By default, you need not define the view and you can see all the views, equivalent to Cisco-predefined everything views. The command is used to define the object the view sees.

Example

The following example shows how to create the views of all objects in the MIB-II sub-tree.

snmp-server view mib2 mib-2 included

The following example shows how to create the views of all objects, including those objects in the system group.

snmp-server view phred system included

The following example shows how to create the views of all objects that includes the objects in the system groups but excludes the objects in system7(sysServices.7) and interface 1.

snmp-server view agon system included

snmp-server view agon system.7 excluded

Related Command

snmp-server community

2.1.1.13 snmp-server source-addr

Syntax

To specify a source address for answering all SNMP requests, run the second one of the following two commands in global configuration mode. To cancel this interface, run the following second command.

snmp-server source-addr a.b.c.d

no snmp-server source-addr

Parameters

Parameters	Description
a.b.c.d	Means the source address for all SNMP requests to be
	answered. Designate the source address of SNMP generating
	packets. The parameter is the IP address the device has set.

Default

The default source address is the nearest routing address.

Command Mode

Global configuration mode

Usage Guidelines

When the SNMP server transmits an SNMP request, you can run this command to designate a special source address.

Example

The following example shows how to designate the IP address "1.2.3.4" of the designated interface as the source address of all SNMP packets.

snmp-server source-addr 1.2.3.4

Related Command

None

2.1.1.14 snmp-server udp-port

Syntax

To specify the port number for the SNMP agent to receive packets, run the following first command in global configuration mode.

snmp-server udp-port *portnum* no snmp-server udp-port

Parameters

Parameters	Description
udp-port	Stands for the ID of the destination port to which SNMP traps
	are sent, which cannot be a command port ID. The value ranges
	from 1 to 65535.

Default

It is the listening port of SNMP agent by default, that is, port 162.

Command Mode

Global configuration mode

Usage Guidelines

The SNMP agent will listen to this port when SNMP server transmits SNMP packets.

Example

The following example shows how to specify the listening port of SNMP agent to port 1234.

snmp-server udp-port 1234

Related Command

None

2.1.1.15 snmp-server encryption

Syntax

To display the configured SNMP community, the SHA encryption password and the MD5 encryption password, run **snmp-server encryption** in global mode. This command is a once-for-all command, which cannot be saved or canceled by its negative form. Format of the command is as follows:

snmp-server encryption

Parameters

None

KYLAND

Default

The default settings is to display the SNMP community, the SHA encryption password and the MD5 encryption password in plain text.

Command Mode

Global configuration mode

Usage Guidelines

This command is used to display the SNMP community, the SHA encryption password and the MD5 encryption password in plain text. In this way, the security of the password is guaranteed.

Example

The following example shows how to show in the plain text the SNMP community, the SHA encryption password and the MD5 encryption password, which are set for host 90.0.0.3.

snmp-server encryption

Related Command

snmp-server community

snmp-server user

2.1.1.16 snmp-server trap-add-hostname

Syntax

To add the host name to the binding variable when SNMP sends traps, run the first one of the following two commands.

snmp-server trap-add-hostname

no snmp-server trap-add-hostname

Parameters

None

Default

The hostname is not added to the binding variable list when traps are being transmitted.

Command Mode

Global configuration mode

Usage Guidelines

This command is a great help in some cases when the NMS needs to locate which host sends these traps.

Example

The following example shows how to enable the trap-to-hostname binding function. Router_config# snmp-server trap-add-hostname

2.1.1.17 snmp-server trap-logs

Syntax

To write the trap transmission records into logs, run the first one of the following two commands.

snmp-server trap-logs no snmp-server trap-logs

Parameters

None

Default

The transmitted traps are not recorded by default.

Command Mode

Global configuration mode

Usage Guidelines

After this function is enabled, the trap transmission records of a device can be sent to the log server and then you can know more about the running state of the device.

Example

The following example shows how to the trap logs function.

Router_config# snmp-server trap-logs

2.1.1.18 snmp-server set-snmp-dos-max

Syntax

To set the incorrect community login retry times in five minutes on the SNMP server, run the first one of the following two commands.

snmp-server set-snmp-dos-max retry times no snmp-server set-snmp-dos-max

Parameters

Parameter	Parameter Description
retry-times	Set the login times for a user to conduct the incorrect community login in five minutes.

Default

The incorrect community login times is not limited.

Command Mode

Global configuration mode

Usage Guidelines

This command can be used to prevent those SNMP host from guessing the device's community viciously, which lessening unnecessary CPU consumption of the device.

Example

The following example shows how to enable the refuse service function and set the max trying times to 10 in five minutes.

Router_config# snmp-server set-snmp-dos-max 10

2.1.1.19 snmp-server keep-alive

Syntax

To set the timely sending heartbeat trap, run **snmp-server keep-alive** in global configuration mode. The time interval is times.

snmp-server keep-alive times

no snmp-server keep-alive

Parameters

Parameters	Description
times	The time interval of heartbeat trap.

Default

The command is not configured by default.

Command Mode

Global configuration mode

Usage Guidelines

The command must be used with snmp-server host.

Example

The following example shows how to set the device sending heartbeat trap every 3 seconds.

snmp-server keep-alive 3

Related Command

snmp-server host

snmp-server hostv6

2.1.1.20 snmp-server necode

Syntax

To set the information about the management node (the unique identifier of the device), run snmp-server necode text. To delete the identifier information, use the no form of this command.

snmp-server necode text

no snmp-server necode

Parameters

Parameters	Description
text	Sets the information about the management node (the unique

identifier of the device).

Default

The node identifier is not set.

Command Mode

Global configuration mode

Usage Guidelines

The command is corresponding to the snmp private MIB variable.

Example

The following example shows the information about the node.

snmp-server necode Dial_System_Operator_at_beeper_#_27345

2.1.1.21 snmp-server event-id

Syntax

To create and set event list, run command snmp-server event-id in the global configuration mode. To delete the event list, use the no form of this command.

snmp-server event-id number trap-oid oid

no snmp-server event-id number [trap-oid oid]

Parameters

Parameters	Description
number	The only identifier of event-id.
oid	trap OID included in event-id.

Default

The event list information is not set by default.

Command Mode

Global configuration mode

Usage Guidelines

The command is used in host configuration.

Example

The following example shows how to set trap whose trap OID is 1.2.3.4.5 to event ID 1.

snmp-server event-id 1 trap-oid 1.2.3.4.5

2.1.1.22 snmp-server getbulk-timeout

Syntax

To set the timeout of processing getbulk request, run command snmp-server getbulk-timeout in the global configuration mode. If all getbulk requests cannot be processed in timeout, the system will return to the current result directly. To delete the configuration, use the no form of this command.

snmp-server getbulk-timeout seconds

no snmp-server getbulk-timeout

Parameters

Parameters	Description
seconds	The timeout of processing getbulk request.

Default

The timeout of processing getbulk request is not set by default.

Command Mode

Global configuration mode

Usage Guidelines

The command is used to set the timeout of processing getbulk request. If all getbulk requests cannot be processed in timeout, the system will return to the current result directly.

Example

The following example shows how to set getbulk-timeout and set the timeout to 5 seconds.

snmp-server getbulk-timeout 5

2.1.1.23 snmp-server getbulk-delay

Syntax

To set getbulk-delay time to prevent snmp occupying excessive cpu when snmp agent processing getbulk request, run command snmp-server getbulk-delay in the global configuration mode. The unit is 0.01 seconds. To delete the configuration, use the no form of this command.

snmp-server getbulk-delay *ticks* no snmp-server getbulk-delay

Parameters

Parameters	Description
ticks	Sets CPU interval time in processing getbulk request. The unit is
	0.01s.

Default

The command is not configured when CPU is processing getbulk request in full load.

Command Mode

Global configuration mode

Usage Guidelines

The command is used to set getbulk-delay time to prevent snmp from occupying excessive cpu when snmp agent processing getbulk request. The unit is 0.01s.

Example

The following example shows how snmp agent pauses one ticks when getting one result in configuring getbulk. snmp-server getbulk-delay 1

2.1.1.24 **show snmp**

Syntax

To monitor SNMP input and output statistics, including illegal community character strings, the number of errors and request variables, run command **show snmp**. To show SNMP engine information, run command **show snmp engineID**. To show SNMP trap host information, run command **show snmp host**. To show SNMP view information, run command **show snmp view**. To show snmp mibs registration information, run command **show snmp view** snmp mibs. To show snmp group information, run command **show snmp group**. To show SNMP user information, run command show snmp user.

show snmp [engineID |host | view | mibs |group|user]

Parameters

Parameters	Description
engineID	Shows SNMP engine information
host	Shows SNMP trap host information.

View	Shows SNMP view information.
mibs	Shows SNMP MIB registration information.
group	Shows SNMP group information.
user	Shows SNMP user information.

None

Command Mode

EXEC mode or global configuration mode

Usage Guidelines

The command **show snmp** is used to show SNMP input and output statistics. The command **show snmp engineID** is used to show SNMP engine information. The command **show snmp host** is used to show SNMP trap host information. The command **show snmp view** is used to show SNMP view information. The command **show snmp mibs** is used to show mib registration information. The command **show snmp group** is used to show SNMP group information. The command **show snmp user** is used to show SNMP user information.

Example

The following example shows how to list SNMP input and output statistics.

#show snmp

- 37 SNMP packets input 0 Bad SNMP version errors
- 4 Unknown community name
- 0 Illegal operation for community name supplied

0 Snmp encoding errors

- 24 Number of requested variables
- 0 Number of altered variables
- 0 Get-request PDUs
- 28 Get-next PDUs
- 0 Set-request PDUs
- 78 SNMP packets output

0 Too big errors (Maximum packet size 1500)

- 0 No such name errors
- 0 Bad values errors
- 0 General errors
- 24 Get-response PDUs PDUs
- 13 SNMP trap PDUs

Meaning of statistics information of SNMP Agent receiving and sending packets:

Displayed Information	Meaning
Unknown community name	Unknown community name
Illegal operation for community name supplied	Illegal operation
Encoding errors	Encoding errors
Get-request PDUs	Get-request PDUs
Get-next PDUs	Get-next PDUs
Set-request PDUs	Set-request PDUs
Too big errors	The packets are too big to generate response packets.
No such name errors	No such name errors
Bad values errors	Bad values errors
General errors	General errors
Get-response PDUs	Get-response PDUs
Trap PDUs	SNMP trap packets

The following example shows how to show SNMP trap host information.

#show snmp host

Notification host: 192.2.2.1 udp-port: 162 type: trap

user: public security model: v1

The following example shows how to show SNMP view information.

#show snmp view

mib2 mib-2 - included permanent active

Related Command

snmp-server host

snmp-server view

2.1.1.25 debug snmp

Syntax

To show SNMP event, packet sending and receiving process and error information, run command **debug snmp**. **debug snmp** [*error* | *event* | *packet*]

To stop showing the information, run command **no debug snmp**.

no debug snmp

Parameters

Parameters	Description
error	Enable the debug switch of SNMP error information.
event	Enable the debug switch of SNMP event information.
packet	Enable the debug switch of SNMP input/output packets.

Default

None

Command Mode

EXEC mode

Usage Guidelines

The command is used to enable SNMP debug information switch and output SNMP event, information of sending and receiving packets, which is helpful for SNMP fault diagnosis.

Example

The following example shows how to debug SNMP receiving and sending packets.

switch#debug snmp packet Received 49 bytes from 192.168.0.29:1433 0000: 30 82 00 2D 02 01 00 04 06 70 75 62 6C 69 63 A0 0..-...public. 0016: 82 00 1E 02 02 7D 01 02 01 00 02 01 00 30 82 00}....0.. 0032: 10 30 82 00 0C 06 08 2B 06 01 02 01 01 03 00 05 .0....+...... 0048: 00 .

Sending 52 bytes to 192.168.0.29:1433

0000: 30 82 00 30 02 01 00 04 06 70 75 62 6C 69 63 A2 0..0....public.

0016: 82 00 21 02 02 7D 01 02 01 00 02 01 00 30 82 00 ..!..}.....0..

0032: 13 30 82 00 0F 06 08 2B 06 01 02 01 01 03 00 43 .0....+.....C

0048: 03 00 F4 36 ...6

Received 51 bytes from 1192.168.0.29:1434

0000: 30 82 00 2F 02 01 00 04 06 70 75 62 6C 69 63 A0 0../....public.

0016: 82 00 20 02 02 6B 84 02 01 00 02 01 00 30 82 00k......0..

0032: 12 30 82 00 0E 06 0A 2B 06 01 02 01 02 02 01 02 .0....+.....

0048:01 05 00 ...

Sending 62 bytes to 192.168.0.29:1434

0000: 30 82 00 3A 02 01 00 04 06 70 75 62 6C 69 63 A2 0..:....public.

0016: 82 00 2B 02 02 6B 84 02 01 00 02 01 00 30 82 00 ..+.k.....0..

0032: 1D 30 82 00 19 06 0A 2B 06 01 02 01 02 02 01 02 .0....+.....

0048: 01 04 0B 45 74 68 65 72 6E 65 74 30 2F 31 ... Ethernet0/1

Domain	Description
Received	Stands for SNMP receiving packets
192.168.0.29	Stands for source IP address
1433	Stands for source address port number
51 bytes	Stands for the length of receiving packets
30 82 00 2D 02 01 00 04 06 70 75 62 6C 69 63 A0	Stands for packets after SNMP ASN encoding
82 00 1E 02 02 7D 01 02 01 00 02 01 00 30 82 00	
10 30 82 00 0C 06 08 2B 06 01 02 01 01 03 00 05	
00	
0public.	Stands for ASCII character of receiving packets. "."
}0	means not in the range of ASCII character.
.0+	
sending	SNMP sending packets
192.168.0.99	Stands for the destination IP address
1433	Stands for the source address port number

52 bytes	Stands for the length of sending and receiving packets
30 82 00 30 02 01 00 04 06 70 75 62 6C 69 63 A2	Stands for packets after SNMP ASN encoding
82 00 21 02 02 7D 01 02 01 00 02 01 00 30 82 00	
13 30 82 00 0F 06 08 2B 06 01 02 01 01 03 00 43	
03 00 F4 36	
00public.	Stands for ASCII character of sending and receiving
!}0	packets. "." means not in the range of ASCII character.
.0+C	
6	

The following example shows how to debug SNMP events.

switch#debug snmp event

Received SNMP packet(s) from 192.2.2.51

SNMP: GETNEXT request

-- ip.ipReasmFails.0

SNMP: Response

>> ip.ipFragOKs.0 = 1

Received SNMP packet(s) from 192.2.2.51

SNMP: GETNEXT request

-- ip.ipFragOKs.0

SNMP: Response

>> ip.ipFragFails.0 = 0

Received SNMP packet(s) from 192.2.2.51

SNMP: GETNEXT request

-- ip.ipFragFails.0

SNMP: Response

>> ip.ipFragCreates.0 = 2

Domain	Description
SNMP	Stands for the current debug SNMP protocol.
GETNEXT request	SNMP getnext request
RESPONSE	SNMP response
	Stands for receiving packets

>>	Transmitting packets
ip.ipReasmFails.0	Stands for MIB OID of access request
ip.ipFragOKs.0 = 1	Stands for being accessed MIB OID and the
	return value

2.1.2 **RMON Configuration Commands**

RMON configuration commands include:

- rmon alarm
- rmon event
- rmon collection stat
- rmon collection history
- show rmon

2.1.2.1 rmon alarm

Syntax

rmon alarm *index variable interval* {absolute | delta} rising-threshold *value* [*eventnumber*] **falling-threshold** *value* [*eventnumber*] [repeat] [owner *string*]

To configure a rmon alarm entry, run the above command.

Parameters

Parameters	Description
index	Stands for the index of the event table Value range: 1-65535
variable	Stands for the object needs to be monitored. Value range: oid of the monitored object.
interval	Stands for the sampling interval Value range: 1~ 2147483647
value	Stands for the alarm threshold Value range: -2147483648~ 2147483647.
eventnumber	Stands for the event index generated after reaching the threshold. Value range: 1~65535.
repeat	Stands for the repeat trigger event.
string	Stands for the owner description information Value range: the length of the character string is 1~31.

eventnumber is not set by default. repeat is not set by default.

Command Mode

Global Configuration Mode

Usage Guidelines

The command is used to monitor the value of specified object. The certain event will be triggered when the value exceeds the threshold.

Example

The following example shows how to set an alarm entry to monitor the object ifInOctets.2 and the sampling interval is 10. When the sampling interval increases more than15, the event 1 will be triggered. When the sampling interval decreases more than 25, the event 2 will be triggered.

rmon alarm 1 1.3.6.1.2.1.2.2.1.10.2 10 absolute rising-threshold 15 1 falling-threshold 25 2 repeat owner switch

2.1.2.2 rmon event

Syntax

rmon event *index* [description *des-string*] [log] [owner *owner-string*] [trap *community*] [ifctrl *interface*] To configure a rmon event entry, run the above command.

no rmon event index

To delete a rmon event entry, run the above command.

Parameters

Parameters	Description
index	Stands for the index of the event table Value range: 1-65535
des-string	Stands for the event description character string. Value range: 1~127.
owner-string	Stands for the owner character string. Value range: 1~31.
community	Stands for the community name when generating trap. Value range: 1~31.
interface	Stands for the shutdown port that the event controls.

None

Command Mode

Global Configuration Mode

Usage Guidelines

The command is used to set a rmon event entry. It is used for alarm.

Example

The following example shows to set one rmon event entry to 6 and the description character string to example; add one item in the log entry when triggering the event and generates trap with public as the community name.

rmon event 6 log trap public description example owner switch

2.1.2.3 rmon collection stats

Syntax

rmon collection stats index [owner string]
To set rmon statistics function, run the above command.
no rmon collection stats index
To delete rmon stats, run the above command.

Parameters

Parameters	Description
index	Stands for the index of the statistics entry. Value range: 1~65535.
string	Stands for the owner character string. Value range: the length of the character string is 1~31.

Default

None

Command Mode

Interface configuration mode

Usage Guidelines

The command must be configured in the interface mode.

Example

The following example shows how to enable the statistics function on gigabit Ethernet interface g0/1.

int g0/1

rmon collection stats 2 owner switch

2.1.2.4 rmon collection history

Syntax

rmon collection history *index* [**buckets** *bucket-number*] [**interval** *second*] [**owner** *owner-name*] To configure a history control entry, run the above command.

no rmon collection history index

To delete a history index, run the above command.

Parameters

Parameters	Description
index	index Value range: 1-65535
bucket-number	The entry of all history record control entries nearest to the bucket-number need to be reserved. Value range: 1~65535.
second	Stands for the time interval. Value range: 1~3600.
owner-name	Stands for the owner character string. Value range: the length of the character string is 1~31.

Default

The default bucket-number is 50 and the default second is 1800.

Command Mode

Interface configuration mode

Usage Guidelines

The command is used to configure in the interface mode. It is used for adding one entry to the history control table.

Example

The following example shows how to add the history control entry on the gigabit Ethernet interface g0/1 and save the statistics of latest 20 time intervals.(Each time interval is 10 seconds.)

int g0/1

rmon collection history 2 buckets 20 interval 10 owner switch

2.1.2.5 show rmon

Syntax

show rmon [alarm] [event] [statistics] [history]
To show rmon configuration, run the above command.

Parameters

None

Default

None

Command Mode

Other modes except the user mode

Usage Guidelines

To show rmon configuration, run the above command.

Example

To show rmon configuration, run the above command.

show rmon

3 Security Configuration Commands

3.1 CAAA Configuration Commands

This chapter describes the commands used to configure AAA authentication methods. Authentication identifies users before they are allowed access to the network and network services.

3.1.1 AAA Authentication Configuration Commands

For information on how to configure authentication using AAA methods, refer to the "Configuring Authentication" chapter. For configuration examples using the commands in this chapter, refer to the "Authentication Examples" section located at the end of the "Configuring Authentication" chapter.

AAA Authentication Configuration Commands include:

- 1. aaa authentication banner
- 2. aaa authentication fail-message
- 3. aaa authentication username-prompt
- 4. aaa authentication password-prompt
- 5. aaa authentication dot1x
- 6. aaa authentication enable default
- 7. aaa authentication login
- 8. aaa group server
- 9. server
- 10. debug aaa authentication
- 11. enable password
- 12. enable(enter)
- 13. service password-encryption

3.1.1.1 aaa authentication banner

Syntax

To configure the login banner, run the following command. To return to the default setting, use the no form of this command.

aaa authentication banner delimiter string delimiter no aaa authentication banner

Parameter

Parameter	Description
delimiter string delimiter	String shown when the user logs in. The delimiter is "".

Default

The default banner is: User Access Verification

Command Mode

Global configuration mode

Usage Guidelines

To create a banner, you have to configure a delimiter and then the text character string. The delimiter is to notify the system that its following text character string will be shown as the banner. The delimiter appears repeatedly at the end of the text character string, indicating that the banner is end.

Example

The following example shows how to change the login banner to the following character string:

aaa authentication banner "Welcome to XXCOM system!"

Related Command

aaa authentication fail-message

3.1.1.2 aaa authentication fail-message

Syntax

To configure the failed-login banner, run the following command. To return to the default setting, use the no form of this command.

aaa authentication fail-message delimiter string delimiter no aaa authentication fail-message

Parameter

Parameter	Description
delimiter string delimiter	String shown when the user logs in. The delimiter is "".

The default failed login banner: Authentication failed!

Command Mode

Global configuration mode

Usage Guidelines

To create a banner, you have to configure a delimiter and then the text character string. The delimiter is to notify the system that its following text character string will be shown as the banner. The delimiter appears repeatedly at the end of the text character string, indicating that the banner is end.

Example

The following example shows how to change the failed-login banner to the following character string:

aaa authentication fail-message "See you later"

Related Command

aaa authentication banner

3.1.1.3 aaa authentication username-prompt

Syntax

To change the username prompt, run the following command. To return to the default setting, use the no form of this command.

aaa authentication username-prompt text-string no aaa authentication username-prompt

Parameter

Parameter	Description
<i>text</i> -string	Text shown when the username prompt
	appears.

Default

The username prompt character string is "Username" when there is no defined text string.

Command Mode

Global configuration mode

Usage Guidelines

The command "aaa authentication username-prompt" can be used to change the character string of the username prompt.

Username:

Some protocols (such as TACACS+) are capable of overlapping the local user name prompt information. In this circumstance, command "aaa authentication username-prompt" doesn't change the character string of the user name prompt.

Note:

The command **aaa authentication username-prompt** doesn't change any prompt information provided by remote TACACS+ or RADIUS server.

Example

The following example shows how to change the character string of the username prompt to the following character string:

aaa authentication username-prompt "YourUsernam:"

Related Command

aaa authentication password-prompt

3.1.1.4 aaa authentication password-prompt

Syntax

To change the text displayed when users are prompted for a password, use the aaa authentication password-prompt global configuration command. Use the no form of this command to return to the default password prompt text. aaa authentication password-prompt text-string

no aaa authentication password-prompt

Parameter

Parameter	Description
test-string	String of text that will be displayed when the user is prompted to enter a password.

Default

There is no user-defined text-string, and the password prompt appears as "Password:"

Command Mode

Global configuration mode

Usage Guidelines

Use the **aaa authentication password-prompt** command to change the default text that the software displays when prompting a user to enter a password. This command changes the password prompt for the enable password as well as for login passwords that are not supplied by remote security servers. The no form of this command returns the password prompt to the default value:

Password:

The **aaa authentication password-prompt** command does not change any dialog that is supplied by a remote TACACS+ server or RADIUS server.

Example

The following example shows how to change the text of the username prompt to "Your Password:"

aaa authentication password-prompt "YourPassword:"

Related Command

aaa authentication username-prompt enable password

3.1.1.5 aaa authentication dot1x

Syntax

To configure dot1x access authentication, run the following command. To return to the default setting, use the no form of the above command.

aaa authentication dot1x {default | list-name} method1 [method2...]
no aaa authentication dot1x {default | list-name}

Parameter

Parameter	Description
Default	Use the authentication method following the Parameteras the default method
list-name	The character string used to name the authentication method list. The method in the authentication method list will be activated when the user accesses the authentication.

method	At one keyword described by "dot1x authentication method".	

The authentication return will be failed if the authentication method is not configured.

Command Mode

Global configuration mode

Usage Guidelines

The default list or other defined lists created by the command **aaa authentication dot1x** will be quoted by dot1x application and thus the dot1x user will be authenticated.

The next authentication method will be adopted only when the former method is failed. Other authentication method will not be adopted if the former authentication method return is failed.

Keyword	Description
group name	Uses the server group for authentication
group radius	Uses tacacs for authentication
group tacacs+	Uses TACACS+ for authentication
local	Uses the local user name data base for authentication
local-case	Uses case-sensitive local username for authentication.
none	Uses no authentication.

dot1x Authentication Method

Example

The following example shows how to create an authentication method list named "TEST". The authentication first tries to connect with TACACS+ server. If no result (either "success" or "failure") is acquired from the TACACS+ server group (no dead error returned from TACACS+ server), try another method: local. If the local method can't acquire accurate result either, the internet can be accessed without authentication. (Up to now the device's authentication methods including aaa system enable(line) and local can acquire an accurate result either success or failure. Therefore, the following command has no none method.)

aaa authentication dot1x TEST group tacacs+ local none

The following example shows how to create a same list but configured with default list. If no other

list is designated, the list is available to all dot1x authentications. aaa authentication dot1x default group tacacs+ local none

Related Command

None

3.1.1.6 aaa authentication enable default

Syntax

To enable AAA authentication to determine if a user can access the privileged command level, use the aaa authentication enable default global configuration command. Use the no form of this command to disable this authentication method. **aaa authentication enable default** method1 [method2...]

no aaa authentication enable default

Parameter

Parameter	Description
method	At least one of the keywords described in "enable authentication method".

Default

The authentication method is not configured. The authentication process returns successfully if the user is the console port. Otherwise, the authentication process fails.

Command Mode

Global configuration mode

Usage Guidelines

Use the **aaa authentication enable default** command to create a series of authentication methods that are used to determine whether a user can access the privileged command level. Method keywords are described in Table 1. The additional methods of authentication are used only if the previous method returns an error, not if it fails. To specify that the authentication should succeed even if all methods return an error, specify none as the final method in the command line.

 Table 0-1
 aaa authentication enable default Methods

	Keyword	Description	
--	---------	-------------	--

enable	Uses the enable password for authentication.
group name	Uses the server group for authentication.
group radius	Uses RADIUS for authentication.
group tacacs+	Uses tacacs+ for authentication.
line	Uses the line password for authentication.
none	Uses no authentication.

Example

The following example shows how to create an authentication method list named "TEST". The authentication first tries to connect with TACACS+ server. If no result (either "success" or "failure") is acquired from the TACACS+ server group (no dead error returned from TACACS+ server), try another method: local. If the local method can't acquire accurate result either, the internet can be accessed without authentication. (Up to now the device's authentication methods including aaa system enable(line) and local can acquire an accurate result either success or failure. Therefore, the following command has no none method.)

aaa authentication enable default group tacacs+ enable none

Related Command

enable password

3.1.1.7 aaa authentication login

Syntax

To set authentication, authorization, and accounting (AAA) authentication at login, use the **aaa authentication login** command in global configuration mode. To disable AAA authentication, use the no form of this command.

aaa authentication login {default | list-name} method1 [method2...] no aaa authentication login {default | list-name}

no ada aumentication login (deladit | iis

Parameter

Parameter	Description
Default	Uses the listed authentication methods that follow this
	argument as the default list of methods when a user

	logs in.
list-name	Character string used to name the list of authentication methods activated when a user logs in.
method	At least one of the keywords described in "login authentication method".

The authentication method is not configured. The authentication process returns successfully if the user is the console port. Otherwise, the authentication process fails.

Command Mode

Global configuration mode

Usage Guidelines

The default and optional list names that you create with the **aaa authentication login** command are used with the login authentication command.

The additional methods of authentication are used only if the previous method returns an error, not if it fails. To ensure that the authentication succeeds even if all methods return an error, specify none as the final method in the command line.

If authentication is not specifically set for a line, the default is to deny access and no authentication is performed.

AAA authentication login Methods	

Keyword	Description
enable	Uses the enable password for authentication.
group name	Uses the server group for authentication.
group radius	Uses RADIUS for authentication.
group tacacs+	Uses tacacs+ for authentication
line	Uses the line password for authentication.
local	Uses the local username database for authentication.
localgroup	Uses the local strategy group user name database for

	authentication.
local-case	Uses case-sensitive local username for authentication.
none	Uses no authentication.

Example

The following example creates an AAA authentication list called TEST. This authentication first tries to contact a TACACS+ server. If no server is found, TACACS+ returns an error and AAA tries to use the enable password. If this attempt also returns an error (because no enable password is configured on the server), the user is allowed access with no authentication. aaa authentication login TEST group tacacs+ group radius none

The following example creates the same list, but it sets it as the default list that is used for all login authentications if no other list is specified:

aaa authentication login default group tacacs+ group radius none

Related Command

None

3.1.1.8 aaa group server

Syntax

To group different RADIUS server hosts into distinct lists and distinct methods, enter the aaa group server radius command in global configuration mode. To remove a group server from the configuration list, enter the no form of this command. **aaa group server** {radius | tacacs+} group-name **no aaa group server** {radius | tacacs+} group-name

Parameter

Parameter	Description
group-name	Character string used to name the group of servers.

Default

No server group.

Command Mode

Global configuration mode

Usage Guidelines

The authentication, authorization, and accounting (AAA) server-group feature introduces a way to group existing server hosts. The feature enables you to select a subset of the configured server hosts and use them for a particular service. It can set 63 server groups at most.

Example

The following example adds a radius server group named radius-group: aaa group server radius radius-group

Related Command

server

3.1.1.9 server

Syntax

To add a server in the AAA server group, use the server command in server-group configuration mode. To remove the associated server from the authentication, authorization, and accounting (AAA) group server, use the no form of this command.

server {A.B.C.D | X:X:X:X:X} [**key** {*password* | {*encryption-type encrypted-password*}}] [**auth-port** *num*] [**acct-port** *num*] [**retransmit** *value*] [**timeout** *value*] [**privilege** *pri*] To add a server in the radius server group, use the following command:

server {A.B.C.D | X:X:X:X} [**key** {*password* | {*encryption-type encrypted-password*}}] **no server** A.B.C.D

Parameter

Parameter	Description
A.B.C.D	IP address of the server.
X:X:X:X:X	IPv6 address of the server
key	key
password	the character string of the key
encryption-type	Encryption type, 0 means no encryption, 7 means encryption
encrypted-password	Encryption password character string corresponding to

	the encryption type
auth-port	authentication destination port
acct-port	account port
num	port number
retransmit value	Retransmit times, the default is twice
timeout value	Timeout for retransmit; the default is 3 seconds.
privilege pri	Server priority; the default is 0.

No server

Command Mode

Server-group configuration

Usage Guidelines

You can set 63 server groups in maximum, 1 radius server chain table and 1 tacacs+ server chain table. The total of all radius server groups and server groups in the server chain tables is 64. The total of all tacacs+ server groups and server groups in the server chain tables is also 64.

Example

The following example adds a server at 12.1.1.1 to the server group:

server 12.1.1.1

Related Command

aaa group server

3.1.1.10 debug aaa authentication

Syntax

To display information on authentication, authorization, and accounting (AAA) TACACS+ authentication, use the **debug aaa authentication** command in privileged EXEC mode. To disable debugging output, use the no form of this command. **debug aaa authentication**

no debug aaa authentication

Parameter

None

Default

Disable debug information

Command Mode

EXEC mode

Usage Guidelines

Use this command to learn the methods of authentication being used and the results of these methods.

Example

None

Related Command

None

3.1.1.11 enable password

Syntax

To set a local password to control access to various privilege levels, use the enable password command in global configuration mode. To remove the password requirement, use the no form of this command.

enable password { password | [encryption-type] encrypted-password } [level number]
no enable password [level number]

Parameter

Parameter	Description
password	Password users type to enter enable mode.
encryption-type	Algorithm used to encrypt the password.
encrypted-password	Encrypted password you enter, copied from another router configuration.

level	Level for which the password applies.
number	Number between 1 and 15 that specifies the privilege level for the user.

No password is defined.

Command Mode

Global configuration mode

Usage Guidelines

There cannot have spaces in the password that the router configures. When using the enable password command, you cannot input space if you enter a clear text password. The length of the clear text password cannot exceed 127 characters.

The default level Parameter is 15 without inputting the level Parameter. If a privilege level is not configured password, then no authentication is performed when a user entering this privilege level.

Our system only supports two types of encryption. The encryption type is 0 and 7 respectively. Parameter 0 indicates no password is defined and you enter a clear text password in the following encrypted-password blank. Parameter 7 indicates a self-defined algorithm is used for encryption and you enter encrypted text password in the following encrypted-password blank. This encrypted text password can be copied from the configuration file of other device.

Example

The following example adds password clever for the privilege level 10, uses encryption-type 0, that is, the clear text password:

enable password 0 clever level 10

The following example adds password Oscar for the default privilege (15), uses encryption-type 7, that is, the encrypted text password:

enable password 7 074A05190326

Assuming the encrypted text password of Oscar is 074A05190326, which is obtained from the configuration file of other router.

Related Command

aaa authentication enable default service password-encryption

3.1.1.12 enable(enter)

Syntax

To enter the EXEC mode when logging in the system, run **enable(enter)** command. **enable(enter)** <1-15>

Parameter

Parameter	Description
<1-15>	To be obtained privilege priority

Default

Do not enter the privileged mode.

Command Mode

User mode

Usage Guidelines

None

Example

>enable(The user is 15 by default.)
Password: (To authenticate by entering the password)
#
#exi
>enable 1(To be obtained privilege priority is 1.)
Password:(Enter password to authenticate.)
#

Related Command

aaa authentication enable default enable password

3.1.1.13 service password-encryption

Syntax

To encrypt passwords, use the service password-encryption command in global configuration mode. To restore the default, use the no form of this command.

service password-encryption no service password-encryption

Parameter

None

Default

No encryption

Command Mode

Global configuration mode

Usage Guidelines

Currently in the realization of our router system, this command is related to username password, enable password and password. If this command is not configured on the router (namely default state), and the system uses the clear text storage method in the above three commands, then the configured clear text of the password can be displayed in the show running-config command. If this command is configured on the router, then the configured password of the above three commands will be encrypted, then the configured clear text of the password cannot be displayed in the show running-config command, even using the no service password-encryption cannot restore the clear text of the password. Please make sure of the configured password before using this command for encryption. The no service password-encryption command only has effect on the password configured by the service password-encryption command.

Example

Use the following command to encrypt for the configured clear text password and also to encrypt for the clear text password that configured after using this command.

switch_config#service password-encryption

Related Command

username username password

enable password

password (the configuration command in vty which can be used for line authentication.)

3.1.2 AAA Authorization Configuration command

This section describes the commands for authentication, authorization and accounting. AAA authorization can limit the effective service to a user. When the authorization result is effective, network access server configures the dialogue process of the user by using the authorization information fed back from authorization server.

The authorization commands include:

- 14. aaa authorization
- 15. debug aaa authorization

3.1.2.1 aaa authorization

Syntax

The global configuration command "aaa authorization" is used for setting the parameter to limit the authority of the user's access to network. The "no" format of the command can be used for closing the authorization of some function.

aaa authorization {{commands <0-15>} | network | exec} {default | *list-name*} *method1* [*method2...*]

no aaa authorization {{commands <0-15>} | network | exec} {default | *list-name*}

aaa authorization config-commands

no aaa authorization config-commands

Parameter

Parameter	Description
commands	EXEC (shell) command authorization
<0-15>	Priority of the to be authorized command
network	The authorization of network type service, such as PPP, SLIP.
exec	It is applicable to the attribute related to the user EXEC terminal dialogue. It determines whether the EXEC shell program can be enabled when users register
	the system or authorize users the priority of entering EXEC shell.
default	Default authorization methods list
list-name	The character string used for naming authentication methods list.
method	One of the keywords listed in the form below.
config-commands	Configuration mode command service

Default

When the user requests for authorization and the authorization methods list required for use is not designated on the corresponding line or the interface, the default authorization methods list will be used. If default methods list is defined, no authorization will take place.

Command Mode

Global configuration mode

Usage Guidelines

The command "aaa authorization" is used for enabling the authorization, creating authorization methods list and defining the authorization method that can be used when the user accesses to the designated functions. The authorization methods list defines the method for authorization implementation and sequence for executing these authorization methods. The methods list is only a simple naming list describing the authorization method for inquiry on the sequence (such as RADIUS and TACACS+). The methods list designate can one or multiple security protocols used for authorization. So it is able to guarantee a backup method in case all the above listed authorization methods fail. Under general condition, the listed first method is used at first in an attempt to authorize the user the authority to access to the designated network service. If the method does not work, the next method in the list shall be selected. The process shall be continued till the successful feedback of authorization results by using some authorization method or all the defined methods are used up.

Keyword of AAAAuthorization:

Once the authorization methods list is defined, the methods list shall be used on the designated line or interface before the defined method is executed. As a part of the authorization process, the authorization command sends a series of request packets of AV pairs to the program of RADIUS or TACACS + server. The server is likely to execute one of the following actions:

- The request is accepted completely
- The request is accepted and the attribute is added to limit the authority of user service

Keyword	Description
group name	Uses group name for authorization.
group radius	Uses radius for authorization.
group tacacs+	Uses tacacs+ for authorization.
if-authenticated	Uses if-authenticated for authorization.
local	Uses the local database for authorization.
none	Uses no authentication.
Keyword	Description
group name	Uses group name for authorization.

• Request is refused and authorization fails

Example

The following Example defines the network authorization methods list named "have a try". The methods list designates RADIUS authorization method used on the serial line employing PPP. If RADIUS server makes no response, the local network authorization is executed. aaa authorization exec have_a_try radius local

Related Command

aaa authentication aaa accounting

3.1.2.2 debug aaa authorization

Syntax

To track the authorization process, use debug **aaa authorization** command. To return to the default setting, use the no form of this command.

debug aaa authorization

no debug aaa authorization

Parameter

None

Default

Disable debug information.

Command Mode

EXEC mode

Usage Guidelines

The command is used to track the authorization process of each user, so that the reason of failure can be found.

Example

None

Related command

None

3.1.3 Accounting Command

This section describes the commands for configuring AAA authentication methods. The accounting function can track the services that users access, and at the same time track the service-consumed network resource number. When AAA accounting is activated, the router will report user's activities to the TACACS+ server or the RADIUS server in the accounting record method. Each accounting record contains the attribute value peer which is stored on the access control server. The data is then applied to network management, client's accounting analysis or

audit.

- Authentication Configuration Commands include:
- 16. aaa accounting
- 17. aaa accounting update
- 18. aaa accounting suppress null-username
- 19. debug aaa accounting

3.1.3.1 aaa accounting

Syntax

To execute AAA accounting onto required services on the basis of accounting or security, run **aaa accounting** in global mode. You can run **no aaa accounting** to disable the accounting function.

aaa accounting {{commands <0-15>} | network | exec | connection} {default | *list-name*} {{{start-stop | stop-only} group {*groupname* | radius | tacacs+}} | none } no aaa accounting { network | exec | connection} {default | *list-name*}

Parameter

Parameter	Description
commands	EXEC (shell) command authorization
<0-15>	Priority of the to be authorized command
network	The authorization of network type service, such as PPP, SLIP.
exec	It is applicable to the attribute related to the user EXEC terminal dialogue. It
connection	Provides information about all egress connections from related router. Currently,
default	Default authorization methods list
list-name	The character string used for naming authentication methods list.
Start-stop	Start and stop accounting
Stop-only	Stop accounting
None	No accounting
group groupname	Uses the server group for accounting
group radius	Uses RADIUS for accounting
group tacacs+	Uses TACACS+ for accounting

Default

If the user requires accounting but he does not designate the accounting method list on the corresponding path or interface, the default accounting method list will be applied. If the default method list is not defined, the accounting will not be executed.

Command Mode

Global configuration mode

Usage Guidelines

You can use the **aaa accounting** command to enable the accounting function, create the accounting method list and define the applied accounting method when user sends the accounting record. The accounting method list defines the accounting execution method and the order to execute these accounting methods. The method list is just a simple naming list, describing the accounting method (RADIUS or TACACS+). The method list can designate one or multiple accounting security protocols. Hence, it secures a standby method if all previous accounting methods fail.

Related Command

aaa authentication aaa

accounting

3.1.3.2 aaa accounting update

Syntax

To periodically transmit temporary accounting records to the accounting server, run **aaa accounting update**. You can run **no aaa accounting update** to disable temporary accounting records.

aaa accounting update { newinfo | periodic number}

no aaa accounting update { newinfo | periodic}

Parameter

Parameter	Description
update	Activates the router to transmit temporary accounting records.
newinfo	Transmits temporary accounting records to the accounting server
	when new accounting information need be reported.
periodic	Periodically transmits temporary accounting records. The period is
	defined by the number Parameter.
number	A Parameter to define the period for temporary
	accounting record transmission

Default

Temporary accounting activity does not occur.

Command Mode

Global configuration mode

Usage Guidelines

The function works with the support of the application end. Therefore, it is inapplicable at present.

Related Command

aaa accounting

3.1.3.3 aaa accounting suppress null-username

Syntax

To stop generating accounting records for those non-user sessions, run aaa accounting suppress null-username in global mode. You can run no aaa accounting suppress null-username to resume the default configuration.

aaa accounting suppress null-username no aaa accounting suppress null-username

Parameter

None

Default

The accounting records will be generated for all sessions, no matter the sessions have username or not.

Command Mode

Global configuration mode

Usage Guidelines

None

Related Command

aaa accounting

3.1.3.4 debug aaa accounting

Syntax

To track the accounting process, use debug aaa accounting command. To return to the default

setting, use the no form of this command. debug aaa accounting no debug aaa accounting

Parameter

None

Default

Disable debug information.

Command Mode

EXEC mode

Usage Guidelines

The command is used to track the accounting process of each user, so that the reason of failure can be found.

Example

None

Related Command

None

3.1.4 Local Account Policy Configuration Commands

The section describes the commands for local account policy configuration. The local account policy is used for local authentication and local authorization.

For information on how to configure local account policies, see "configuring local account policies". If you want to see an example of configuring using the commands in this section, read the example section at the end of the "configuring local account policy" document.

The local account policy configuration commands include:

- 20. localauthen
- 21. localauthor
- 22. localpass
- 23. localgroup
- 24. local authen-group
- 25. local author-group
- 26. local pass-group
- 27. local user

- 28. username
- 29. show local-users
- 30. show aaa users

3.1.4.1 localauthen

Syntax

To configure the local authentication policy, run **localauthen** command in the global configuration mode. To return to the default setting, use the no form of this command.

localauthen WORD

no localauthen WORD

Parameter

Parameter	Parameter Description
WORD	name of local authentication policy

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

Enter the local authentication policy configuration, use localauthen WORD command. Use the following command to configure the local authentication policy:

31. The maximum tries with a certain time:

login max-tries <1-9> **try-duration** 1d2h3m4s

Parameter	Parameter Description
max-tries	the maximum tries
<1-9>	The maximum tries ranges from 1 to 9.
try-duration	The duration for login trial.
1d2h3m4s	The format of day, hour, minute and second.

Related Command

login max-tries

localgroup local authen-group username

3.1.4.2 localauthor

Syntax

To configure the local authorization policy, run localauthor command in the global configuration mode. To return to the default setting, use the no form of this command.

localauthor WORD

no localauthor WORD

Parameter

Parameter	Parameter Description
WORD	Name of the local authorization policy

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

Enter the local authorization policy configuration, use **localauthen WORD** command. Use the following command to configure the local authorization policy:

To authorize the priority for the login user

exec privilege {default | console | ssh | telnet} <1-15>

Parameter	Parameter Description
default	The default priority (when the concrete login method is not configured, authorize by the priority.)
console	The authorization priority of the login user in the console port.
ssh	The authorization priority of the ssh login user
telnet	The authorization priority of the telnet login user
<1-15>	Priority

Related Command

exec privilege localgroup local author-group username

3.1.4.3 localpass

Syntax

To configure the local password policy, use **localpass** command. To return to the default setting, use the no form of this command.

localpass WORD

no localpass WORD

Parameter

Parameter	Parameter Description
WORD	Name of local password policy

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

Enter the localpass WORD policy configuration, use localpass WORD command. Use the following command to configure the local password policy:

- 32. The password and username is different
- non-user
- 33. History password check (It is different with the history password when modifying the user password)
- non-history
- 34. Designate the password content
- element [number] [lower-letter] [upper-letter] [special-character]

Parameter	Parameter Description
number	It must include numbers.
lower-letter	It must include the lower letter.
upper-letter	It must include the upper letter.
special-character	It must include the special character.

- 35. The minimum length of the password:
- min-length <1-127>

Parameter	Parameter Description
<1-127>	The minimum length (The range is 1-127)

- 36. The password validity:
- validity 1d2h3m4s

Parameter	Parameter Description
1d2h3m4s	The format of day, hour, minute and second.

Related Command

non-use non-history element min-length validity localgroup local pass-group username

3.1.4.4 localgroup

Syntax

To configure the local group, run **localgroup** command in the global configuration mode. To return to the default setting, use the no form of this command.

localgroup WORD

no localgroup WORD

Parameter

Parameter	Parameter Description
WORD	Name of the local policy group

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

Enter the localgroup WORD policy configuration, use localpass WORD command. Use the following command to configure the local password policy:

- local authen-group
- local author-group
- local pass-group
- local user
- username

Related Commands

local authen-group local author-group local pass-group local user username localgroup local author-group

3.1.4.5 local authen-group

Syntax

To configure the local authentication group, run local authen-group command. The local authentication group is by default in the global configuration mode. To return to the default setting, use the no form of this command.

local authen-group WORD

no local authen-group

Parameter

Parameter	Parameter Description
WORD	Name of local authentication group

Default

None

Command Mode

Global configuration mode, local policy group configuration mode

Usage Guidelines

None

Related commands

localauthen localgroup local authen-group

3.1.4.6 local author-group

Syntax

To configure the local authorization group, use the local author-group command. The local authorization group is by default in the global configuration mode. To return to the default setting, use the no form of this command.

local author-group WORD

no local author-group

Parameter

Parameter	Parameter Description
WORD	Name of the local authorization group

Default

None

Command Mode

Global configuration mode, local policy group configuration mode

Usage Guidelines

None

Related Command

localauthor localgroup local author-group

3.1.4.7 local pass-group

Syntax

To configure the local password group, use the local pass-group command. The local pass-group is by default in the global configuration mode. To return to the default setting, use the no form of this command.

local pass-group WORD

no local pass-group

Parameter

Parameter	Parameter Description
WORD	Name of the local password group

Default

None

Command Mode

Global configuration mode, local policy group configuration mode

Usage Guidelines

None

Related Command

localpass localgroup local pass-group

3.1.4.8 local user

Syntax

To configure the maximum connections and freeze users of the account configured in the local group, run **local user** command. The local user group is by default in the global configuration mode. To return to the default setting, use the no form of this command. **local user {maxlinks** <1-255>**} | { freeze** *WORD* **} no local user {maxlinks** | { freeze *WORD* }

Parameter

Parameter	Parameter Description
maxlinks	Limit the number of login users simultaneously for one user name
<1-255>	amount (range from 1-255)
freeze	freeze users
WORD	user name

Default

None

Command Mode

Global configuration mode, local policy group configuration mode

Usage Guidelines

None

Related command

localgroup

3.1.4.9 username

Syntax

To add users in the local user database for local authentication and authorization, run the following command. The username is by default in the global configuration mode. To return to the default setting, use the no form of this command.

username username [password password | {encryption-type encrypted-password}] [maxlinks number] [authen-group WORD] [author-group WORD] [pass-group WORD] [autocommand command] [bind-ip A.B.C.D] [bind-mac H:H:H:H:H] [bind-pool WORD] [bind-port port][callback-dialstring string] [callback-line line] [callback-rotary rotary] [nocallback-verify] [nohangup] [noescape] no username username

no usemane as

Parameter

Parameter	Parameter Description
username	user name character string
password	username password
password	Plain text of the password character string
encryption-type	Type of password encryption
encrypted-password	Cipher text of the password which corresponds to the limited encryption type
maxlinks	Links established by the account (the number of simultaneous login users of one user name)
number	the number of links
authen-group	Designate local authen-group
WORD	Name of local authen-group
author-group	Designate local author-group
WORD	Name of local author-group
pass-group	Designate local pass-group
WORD	Name of local pass-group
autocommand	Auto run the designated command after the user logs in. The auto command must be used at the end of the command line.
command	Auto run the command character string.
Non-supported options	
bind-ip	binding IP address (non-supported)
A.B.C.D	IP address
bind-mac	Binding user mac address (non-supported)
H:H:H:H:H:H	ARP recorded 48 byte hardware address

bind-pool	Binding user address pool (non-supported)
WORD	Address pool name
bind-port	Binding user port (non-supported)
port	Port
callback-dialstring	Call back telephone number (non-supported)
string	Telephone number character string;
callback-line	The line used in call back (non-supported)
line	ine number
callback-rotary	Call back rotary configuration (non-supported)
rotary	Rotary number
nocallback-verify:	No callback verification (non-supported)
nohangup	No hangup after the user logs in and auto run the command (non-supported)
noescape	No escape character after the user logs in (non-supported)

Default

None

Command Mode

Global configuration mode, local policy group configuration mode

Usage Guidelines

The password is empty character string when there is no password parameter.

- User-maxlinks limit the established number of sessions simultaneously in one account. The session will not be count in if it is not authenticated by the local auth-group. To check the basic information of teach online user, run show aaa users command.
- Our system only supports two types of encryption. The encryption type is 0 and 7 respectively. Parameter 0 indicates no password is defined and you enter a clear text password in the following encrypted-password blank. Parameter 7 indicates a self-defined algorithm is used for encryption and you enter encrypted text password in the following encrypted-password blank. This encrypted text password can be copied from the configuration file of other device.

Example

The following example shows how to add local users whose user name is someone and whose password is someother:

username someone password someother

The following example shows how to add the local user whose name is Oscar and whose password is Joan. The adopted encryption-type is 7. Enter the password ciphertext:

enable password 7 1105718265

Suppose that the cipher text of Joan is 1105718265, the value of the cipher text is obtained from the configuration files of other routers.

Related command

aaa authentication login

3.1.4.10 show local-users

Syntax

To show the overview of all local AAA account, run show local-users command.

show local-users

Parameter

None

Default

None

Command Mode

EXEC mode

Usage Guidelines

The command is used to show all AAA accounts which include Local group default, links, pw_present, login_tries, login_try_time and freezing_cause.

Example

#show local-use Local group def					
username	linl	ks pw_present	login_tries	login_try_time	freezing_cause
admin	1	0s	0	0s	
aaa	0	0s	0	0s	
Domain		Description			
Local group default:		local group			
links Links used by			count (It is how	many users are using	j.)
pw_present		Password presence time (configure the valid password period)			
login_tries Password matching failure times (set the max login tries, 0 means no setting.)) means no setting.)		
login_try_time		Timeout of password matching failure (se the max login tries, 0 means no setting.)			
freezing_cause		Reason of account freezing.			

Related command

username

3.1.4.11 show aaa users

Syntax

To show the overview of all online AAA users, run show aaa users command. **show aaa users**

Parameter

None

Default

None

Command Mode

EXEC mode

Usage Guidelines

The command can be used to show information of all online users such as port, username, service type (service), online

duration (time) and IP address (peer_address).

Example

#show aa	a users				
Port	User	Service	Duration	Peer	r Address
console 0	zjl	exec	04:14:03	unknown	
vty 0	aaa	exec	00:12	:24	172.16.20.120
Domain		Description			
Port		ID of the interface	where user lies, or ir	ndex numb	per of VTY
User		Character string of	fusername		
Service		Service applied by	the user		
Duration		Online duration tim	ne of the user.		
Peer Address		IP address of the r	emote host where th	e user lies	3

Related command

username

3.1.5 RADIUS Configuration Commands

This chapter describes the commands used to configure RADIUS. RADIUS is a distributed client/server system that secures networks against unauthorized access. In the implementation, RADIUS clients run on routers and send authentication requests to a central RADIUS server that contains all user authentication and network service access information.

For information on how to configure RADIUS, refer to the chapter "Configuring

RADIUS".

RADIUS Configuration Commands include:

- 37. debug radius
- 38. ip radius source-interface
- 39. radius-server acct-on
- 40. radius-server challenge-noecho
- 41. radius-server deadtime
- 42. radius-server host
- 43. radius-server key

- 44. radius-server optional-passwords
- 45. radius-server retransmit
- 46. radius-server timeout
- 47. radius-server vsa send
- 48. radius-server attribute
- 49. radius-server directed-resquest

3.1.5.1 debug radius

Syntax

To display information associated with RADIUS, use the debug radius command in EXEC mode. To disable debugging output, use the no form of this command. **debug radius** {*event* | *packet*}

no debug radius {*event* | *packet*}

Parameter

Parameter	Description
event	Displays radius event
packet	Displays radius packet.

Default

None

Command Mode

EXEC mode

Usage Guidelines

The command can be used to debug network system to locate the authentication failure reason.

Example

The following example debugs RADIUS event:

debug radius event

3.1.5.2 ip radius source-interface

Syntax

To force RADIUS to use the IP address of a specified interface for all outgoing RADIUS packets,

use the ip radius source-interface command in global configuration mode. To prevent RADIUS from using the IP address of a specified interface for all outgoing RADIUS packets, use the no form of this command.

ip radius source-interface interface-name

no ip radius source-interface

Parameter

Parameter	Description
interface-name	Name of the interface that RADIUS uses for all of its outgoing packets.

Default

No default behavior or values

Command Mode

Global configuration mode

Usage Guidelines

Use this command to set the IP address of a subinterface to be used as the source address for all outgoing RADIUS packets. The IP address is used as long as the subinterface is in the up state. In this way, the RADIUS server can use one IP address entry for every network access client instead of maintaining a list of IP addresses.

This command is especially useful in cases where the router has many subinterfaces and you want to ensure that all RADIUS packets from a particular router have the same IP address.

The specified subinterface must have an IP address associated with it. If the specified subinterface does not have an IP address or is in the down state, then RADIUS reverts to the default. To avoid this, add an IP address to the subinterface or bring the subinterface to the up state.

Example

The following example shows how to configure RADIUS to use the IP address of vlan 1 for all outgoing RADIUS packets:

ip radius source-interface vlan 1

Related Command

ip tacacs source-interface

3.1.5.3 radius-server attribute

Syntax

To transmit some attributes in radius AAA, run the following command. To return to the default setting, use the no form of this command.

radius-server attribute {4 | 32 | 95}

no radius-server attribute {4 | 32 | 95}

Parameter

Parameter	Parameter Description
4	Transmit the value of attribute 4 (NAS ip address) after the parameter in dealing with the radius.
32	Designate the transmission attribute 32 (NAS identifier) in radius authentication and accounting according to the command after the parameter.
95	Designate the transmission attribute 95 (NAS ipv6 address) in radius authentication and accounting according to the command after the parameter.

Default

None

Command Mode

Global configuration mode

Usage Guidelines

Use radius-server attribute command to designate a certain attribute in dealing with radius.

Use radius-server attribute 4 (NAS IP address) and designate transmission in RADIUS packet.

- Designate the transmission attribute 32 (NAS identifier) in radius authentication and accounting according to the command after the parameter.
- Designate the transmission attribute 95 (NAS ipv6 address) in radius authentication and accounting according to the command after the parameter.

Example

radius-server attribute 4 X.X.X.X transmits radius attribute 4 in RADIUS packet and use X.X.X.X as the attribute value

radius-server attribute 32 in-access-req transmits NAS identifier in authentication request

radius-server attribute 32 in-account-req transmits NAS identifier in accounting request

radius-server attribute 32 identifier configures NAS identifier

radius-server attribute 95 X:X:X:X:X transmits radius attribute 95 in RADIUS packet and use X:X:X:X:X as the attribute value

Related Command

None

3.1.5.4 radius-server challenge-noecho

Syntax

To prevent user responses to Access-Challenge packets from being displayed on the screen, use the radius-server challenge-noecho command in global configuration mode. To return to the default condition, use the no form of this command. radius-server challenge-noecho no radius-server challenge-noecho

Parameter

None

Default

All user responses to Access-Challenge packets are echoed to the screen.

Command Mode

Global configuration mode

Usage Guidelines

None

Example

radius-server challenge-noecho

3.1.5.5 radius-server deadtime

Syntax

To improve RADIUS response times when some servers might be unavailable and cause the

unavailable servers to be skipped immediately, use the radius-server deadtime command in global configuration mode. To set dead-time to 0, use the no form of this command. **radius-server deadtime** minutes **no radius-server deadtime**

Parameter

Parameter	Description
minutes	Length of time, in minutes, for which a RADIUS server is skipped over by transaction
	requests, up to a maximum of 1440 minutes (24 hours).

Default

Dead time is set to 0.

Command Mode

Global configuration mode

Usage Guidelines

Use this command to cause the software to mark as "dead" any RADIUS servers that fail to respond to authentication requests, thus avoiding the wait for the request to time out before trying the next configured server. A RADIUS server marked as "dead" is skipped by additional requests for the duration of minutes or unless there are no servers not marked "dead."

Example

The following example specifies five minutes deadtime for RADIUS servers that fail to respond to authentication requests: radius-server deadtime 5

Related Command

radius-server host radius-server retransmit radius-server timeout

3.1.5.6 radius-server directed-resquest

Syntax

To designate RADIUS server with the format of '@server', run radius-server directed-resquest command in the global configuration mode. To return to the default setting, use the no form of this command.

radius-server directed-resquest [restricted] no radius-server directed-resquest [restricted]

Parameter

Parameter	Parameter description
restricted	Only enable the user to designate RADIUS server with the format of '@server'

Default

It doesn't support to designate RADIUS server with the format of '@server'.

Command Mode

Global configuration mode

Usage Guidelines

None

Example

radius-server directed-resquest

Related Command

None

3.1.5.7 radius-server host

Syntax

To specify a RADIUS server host, use the radius-server host command in global configuration mode. To delete the specified RADIUS host, use the no form of this command.

radius-server host *ip-address*|*ipv6-address* [*auth-port port-number1*] [acct-port *port-number2*]

no radius-server host ip-address ipv6-address

Parameter

Parameter	Description
ip-address	IP address of the RADIUS server host.
ipv6-address	IPv6 address of the RADIUS server host.

auth-port	(Optional) Specifies the UDP destination port for authentication requests.
port-number1	(Optional) Port number for authentication requests; the host is not used for authentication if
acct-port	(Optional) Specifies the UDP destination port for accounting requests.
port-number2	(Optional) Specifies the UDP destination port for accounting requests; the host is not used for accounting if set to 0.

Default

No RADIUS host is specified;

Command Mode

Global configuration mode

Usage Guidelines

You can use multiple radius-server host commands to specify multiple hosts. The software searches for hosts in the order in which you specify them.

Example

The following example specifies host 1.1.1.1 as the RADIUS server and uses default ports for both accounting and authentication

radius-server host 1.1.1.1

The following example specifies port 12 as the destination port for authentication requests and port 16 as the destination port for accounting requests on the RADIUS host named host1: radius-server host 1.2.1.2 auth-port 12 acct-port 16

Related Command

aaa authentication radius-server key tacacs server username

3.1.5.8 radius-server key

Syntax

To set the authentication and encryption key for all RADIUS communications between the router and the RADIUS daemon, use the radius-server key command in global configuration mode. To disable the key, use the no form of this command.

radius-server key string | {encryption-type encrypted-password} no radius-server key

Parameter

Parameter	Description
string	Spedifies the encrypted key.
	This encrypted key must match the encrypted key that RADIUS server
encryption-type	encryption type, 0 means no encryption, and 7 means encryption.
encrypted-password	The ciphertext of the password corresponding to the encryption type limited by "encryption-type".

Default

The encrypted key is the empty character string.

Command Mode

Global configuration mode

Usage Guidelines

The key entered must match the key used on the RADIUS daemon. All leading spaces are ignored, and all white spaces cannot be included in the encrypted key.

Example

The following example sets the encryption key to " firstime ": radius-server key firstime

Related Command

radius-server host tacacs server username

3.1.5.9 radius-server optional-passwords

Syntax

To specify that the first RADIUS request to a RADIUS server be made without password

verification, use the radius-server optional-passwords command in global configuration mode. To restore the default, use the no form of this command.

radius-server optional-passwords no radius-server optional-passwords

Parameter

This command has no Parameters or keywords.

Default

Disabled

Command Mode

Global configuration mode

Usage Guidelines

When the user enters the login name, the login request is transmitted with the name and a zero-length password. If accepted, the login procedure completes. If the RADIUS server refuses this request, the server software prompts for a password and tries again when the user supplies a password. The RADIUS server must support authentication for users without passwords to make use of this feature.

Example

The following example configures the first login to not require RADIUS verification: radius-server optional-passwords

Related Command

radius-server host

3.1.5.10 radius-server retransmit

Syntax

To specify the number of times the software searches the list of RADIUS server hosts before giving up, use the radius-server retransmit command in global configuration mode. To disable retransmission, use the no form of this command. **radius-server retransmit** *retries*

no radius-server retransmit

Parameter

Parameter	Description

retries Maximum number of retransmission attempts. The

Default

2 attempts

Command Mode

Global configuration mode

Usage Guidelines

This command is generally used with the radius-server timeout command, indicating the interval for which a router waits for a server host to reply before timing out and the times of retry after timing out.

Example

The following example specifies a retransmit counter value of five times: radius-server retransmit 5

Related Command

radius-server timeout

3.1.5.11 radius-server timeout

Syntax

To set the interval for which a router waits for a server host to reply, use the radius-server timeout command in global configuration mode. To restore the default, use the no form of this command.

radius-server timeout seconds

no radius-server timeout

Parameter

Parameter	Descriptic	n					
seconds	Number	that	specifies	the	timeout	interval,	in
	eeconde	The	default is 3	eecon	de		

Default

3 seconds

Command Mode

Global configuration mode

Usage Guidelines

This command is generally used with the radius-server retransmit command.

Example

Use this command to set the number of seconds a router waits for a server host to reply before timing out.

radius-server timeout 10

Related Command

None

3.1.5.12 radius-server vsa send

Syntax

To configure the network access server to recognize and use vendor-specific attributes, use the radius-server vsa send command. To restore the default, use the no form of this command. **radius-server vsa send [authentication] no radius-server vsa send [authentication]**

Parameter

Parameter	Description					
authentication	(Optional)	Limits	the	set	of	recognized
	vendor-speci	fic attribut	as to only	u outhor	ticatio	a attributes

Default

Disabled

Command Mode

Global configuration mode

Usage Guidelines

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information between the network access server and the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) allow vendors to support their own extended attributes not suitable for general use. The

radius-server vsa send command enables the network access server to recognize and use both accounting and authentication vendor-specific attributes. Use the accounting keyword with the radius-server vsa send command to limit the set of recognized vendor-specific attributes to just accounting attributes. Use the authentication keyword with the radius-server vsa send command to limit the set of recognized vendor-specific attributes to just accounting attributes. Use the authentication keyword with the radius-server vsa send command to limit the set of recognized vendor-specific attributes to just authentication attributes.

Example

The following example configures the network access server to recognize and use vendor-specific accounting attributes:

radius-server vsa send authentication

Related Command

radius-server host

3.1.5.13 radius-server acct-on

Relevant configuration about accounting function. **[no] radius-server acct-on enable** Open/close radius accounting function. **[no] radius-server acct-on retransmit <1-15>**

Set the time of radius accounting retransmit, the default is 3times.

Parameter

Parameter	Description
Retransmit	Times of radius accounting retransmit

Default

Close accounting function, the retransmit is 3 times.

Command mode

Global configuration mode

Usage Guidelines

None

Example

The following example configures the switch. Open the accounting function, set the retransmit

times as 5:

radius-server acct-on enable

radius-server acct-on retransmit 5

Related Command

None

3.1.6 TACACS+ Commands

This chapter describes the commands for configuring TACACS+ security protocols. TACACS+ can be used for authenticating the identity of the user, authorization of service authority and the accounting of the execution process of user service.

For information and examples of how to configure TACACS+, see "configuring TACACS+".

3.1.6.1 debug tacacs

Syntax

The command "debug tacacs" can be used for tracing TACACS+protocol event or checking the packets received or sent. The "no" format of the command can be used for canceling the trace. debug tacacs {event | packet} no debug tacacs {event | packet}

Parameter

Parameter	Description
event	Tracing TACACS+ event
packet	Tracing TACACS+ packet.

Default

Disable debug information

Command Mode

EXEC mode

Usage Guidelines

The command is only used for the debugging of the network to find out the cause of failure of AAA service.

Example

The following example will open the event trace of TACACS+ debug tacacs event

Related Command

None

3.1.6.2 ip tacacs source-interface

Syntax

The global configuration command "ip tacacs source-interface" is used for applying IPaddress of the designated interface to all the TACACS+ packets. The "no" format of the command cancel the using of the IP address.

ip tacacs source-interface subinterface-name no ip tacacs source-interface

Parameter

Parameter	Description
	Interface name corresponding to the source IP address of all TACACS+

Default

None

Command Mode

Global configuration mode

Usage Guidelines

The command can be used to set source IP address for all TACACSpackets by designating the source interface. So long as the interface is under "up" state, all TACACS+ packets will use IP address of the interface as the source address, thus ensuring that TACACS+ packet of each router will have the same source IP address. So TACACS+ server will not need to maintain the address list containing the IP address. That is to say, in order to ensure all TACACS + packets coming from the specific router to have the same source IP address, the command will work when the router has many interfaces.

The designated interface shall have the IP address linked to the interface. If the designated interface has no IP address or is under a "down" state, the default value will be restored, namely the source IP address shall be determined on the real condition. In order to avoid the case, the IP address shall be added to the interface and the interface shall be ensured under the

"up" state.

Example

The following Example will use IP address of the interface s1/0 as source IP address of all TACACS+ packets.

ip tacacs source-interface vlan1

Related Command

ip radius source-interface

3.1.6.3 tacacs-server host

Syntax

The command "tacacs-server host" can be used for designating TACACS+ server, run tacacs-server host command. To return to the default setting, use the no form of this command. tacacs-server host *ip-address* [single-connect|multi-connect] [port *integer1*] [timeout *integer2*] [key *string*] no tacacs-serve *ip-address*

Parameter

Parameter	Parameter Description		
ip-address	IP address of the server		
single-connect	(optional) Maintain a single open TCP connection from AAA/TACACS+ server.		
multi-connect	(optional) Maintain multiple TCP connections from AAA/TACACS+ server.		
port	(optional) Set port number. The option covers up the default port number 49.		
integer1	(optional) The port number of the server. The effective port number ranges from 1 to 65536.		
timeout	(optional) Set timeout value of the server. It covers up the global timeout value for the server by tacacs command.		
integer2	(optional) Set timeout value by seconds.		
key	(optional) Set authentication and encryption key. The key must be match with the key of TACACS+ server program. The key		

	covers up the server key of global tacacs key.		
string	(optional) Set encryption key character string.		

Default

No TACACS+ server is set.

Command Mode

Global Configuration Mode

Usage Guidelines

Use tacacs-server commands to set multiple hosts and explore the host in order. As some parameters of tacacs-server host command cover up configurations tacacs-server timeout and tacacs-server key commands set in global configuration mode. Therefore, the command can configure the communication attribute of each TACACS+ server.

Example

The following example shows how to negotiate the router and TACACS+ server whose IP address is 1.1.1.1 (for AAA) and set the TCP service port of the server as 51. The timeout value is 3 seconds and the encryption key is a secret.

tacacs -server host 1.1.1.1 single-connection port 51 timeout 3 key a_secret

3.1.6.4 tacacs-server key

Syntax

To set the encryption keys between the router and TACACS+ server, run tacacs-server key command in the global configuration mode. To return to the default setting, use the no form of this command.

tacacs-server key no tacacs-server key

Parameter

Parameter	Parameter Description
key	It is used for setting the encryption key. The encryption key must be match with the key of TACACS+ server program.

Command Mode

Global Configuration Mode

Usage Guidelines

The encryption key must be set by tacacs-server key command before running TACACS+ protocol. The encryption key must be match with the key of TACACS+ service program. All spaces must be avoided.

Example

The following example shows how to set the encryption key as testkey: tacacs-server key testkey

3.1.6.5 tacacs-server timeout

Syntax

The command "tacacs timeout" can be used to set the length of timeout for TACACS+ to wait for the response from some server. The "no" format of the command can be used for restoring default value.

tacacs timeout seconds no tacacs timeout

Parameter

Parameter	Description
seconds	The value of timeout calculated on second (between 1 to 600).
	The default value is 5 seconds.

Default

5s

Command Mode

Global configuration mode

Usage Guidelines

If some server sets its own timeout value of waiting through the parameter in the command "tacacs server", the value will cover the global timeout value set by this command.

Example

The Example below changes the value of timeout timer as 10 seconds. tacacs-server timeout 10

4 WEB Configuration Commands

4.1 HTTP Configuration Commands

4.1.1 ip http language

Syntax

[no] ip http language { english}It is used to set the prompt language when a command is configured.

Parameter

Parameter	Description
english	Sets the language to English.

Default

None

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows how to set the language to English. Switch_config#ip http language English

4.1.2 ip http port

Syntax

ip http port { portNumber }
It is used to set the HTTP port.
no ip http port
It is used to resume the HTTP port to be the default port 80.

Parameter

Parameter	Description
-----------	-------------

portNumber N	Means the HTTP port's valid range is from 1 to 65535.
--------------	---

Default

80

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows how to set the HTTP port to 1234. Switch_config#ip http port 1234

4.1.3 ip http secure-port

Syntax

ip http secure-port {portNumber} It is used to set

the HTTPS port.

no ip http secure-port

It is used to resume the HTTPS port to be the default port 443.

Parameter

Parameter	Description
portNumber	Means the HTTPS port's valid range is from 1 to 65535.

Default

443

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows how to set the HTTPS port to 1234. Switch_config# ip http secure-port 1234

4.1.4 ip http server

Syntax

[no] ip http server It is used to enable the HTTP service.

Usage Guidelines

This command is configured in global configuration mode.

Example

It is used to enable the HTTP service. Switch_config# ip http server

4.1.5 ip http http-access enable

Syntax

[no] ip http http-access enable It is used to set the HTTP access mode.

Usage Guidelines

This command is set in global configuration mode and used to access the website, which starts with $\underline{http://}$.

Example

The following example shows how to set the HTTP access mode. Switch_config# ip http http-access enable

4.1.6 ip http ssl-access enable

Syntax

[no] ip http ssl-access enable It is used to set the HTTPS access mode.

Usage Guidelines

This command is set in global configuration mode and used to access the website, which starts with $\underline{http://}$.

Example

The following example shows how to set the HTTPS access mode. Switch_config# ip http ssl-access enable

4.1.7 ip http web use-footer

Syntax

ip http web use-footerIt is used to set "about" option and the page displayed in a web page.no ip http web use-footerIt is used to cancel "about" option and the page displayed in a web page.

Description

This command is configured in global configuration mode.

Example

The following example shows how to make the "about" page not displayed in a web page. Switch_config# no ip http web use-footer

4.1.8 ip http web max-vlan

Syntax

ip http web max-vlan { max-vlan }It is used to set the maximum number of VLAN entries displayed in a web page.no ip http web max-vlanIt is used to resume the default maximum number of VLAN entries to 100.

Parameter

Parameter	Description
max-vlan	Means the maximum number of vlan entries in the web page,
	which ranges from 1 to 4094.

Default

100

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows how to set the maximum number of VLAN entries displayed in a web page to 123.

Switch_config# ip http web max-vlan 123

4.1.9 ip http web max-macaddr-table

Syntax

ip http web max-macaddr-table { max-macaddr-table }It is used to set the maximum number of MAC entries displayed in a web page.no ip http web max-macaddr-tableIt is used to resume the default maximum number of MAC entries to 100.

Parameters

Parameters	Description
max-macaddr-table	Means the maximum number of MAC entries
	in the web page, which ranges from 1 to 500.

Default value

100

Description

This command is configured in global configuration mode.

Example

The following example shows how to set the maximum number of MAC entries displayed in a web page to 123.

Switch_config# ip http web max-macaddr-table 123

4.1.10 ip http web igmp-groups

Syntax

ip http web igmp-groups { *igmp-groups* } It is used to set the maximum number of multicast entries displayed in a web page. no ip http web igmp-groups

It is used to resume the default maximum number of multicast entries to 15.

Parameters

Parameters	Description
igmp-groups	Means the maximum number of multicast
	entries in the web page, which ranges from 1
	to 100.

Default value

15

Description

This command is configured in global configuration mode.

Example

The following example shows how to set the maximum number of multicast entries displayed in a web page to 12.

Switch_config#ip http web igmp-groups 12

4.1.11 ip http web portpanel visible

Syntax

ip http web portpanel visibleIt is used to set the port panel displayed in a web page.no ip http web portpanel visibleIt is used to set the port panel not displayed in a web page.

Description

This command is configured in global configuration mode.

Example

The following example shows how to set the port panel not displayed in a web page. Switch_config#no ip http web portpanel visible

4.1.12 ip http web max-syslogs

Syntax

ip http web max-syslogs { max-syslogs }

It is used to set the maximum number of system log entries displayed in a web page. no ip http web max-syslogs

It is used to resume the default maximum number of system log entries to 128.

Parameters

Parameters	Description
max-syslogs	Means the maximum number of system log
	entries in the web page, which ranges from
	100 to 500.

Default value

128

Description

This command is configured in global configuration mode.

Example

The following example shows how to set the maximum number of system log entries displayed in a web page to 200.

Switch_config#ip http web max-syslogs 200

4.1.13 show ip http

Syntax

show ip http

Usage Guidelines

It is used to browse whether the HTTP server is enabled.

Example

Switch_config#show ip http Http server is running

5 Interface Configuration Commands

5.1 Interface Configuration Commands

5.1.1 Interface Configuration Commands

The following are interface configuration commands:

- Interface
- description
- bandwidth
- delay
- shutdown
- show interface
- show running-config interface

5.1.1.1 interface

Syntax

[no] interface port

To enter the interface configuration mode, run the above-mentioned command. If the logical port is inexistent, you have to create this port first and then enter the port mode. If the physical port is inexistent, the command will fail to be executed. The negative form of this command has different functions for the physical port and the logical port.

The **no interface physical-port** command is used to resume the default settings of the physical port. The **no interface** *logical-port* command is used to delete the logical port.

Parameter

Parameter	Description
Port	Stands for the existent physical or logical port.

Default

The default mode is not the port mode.

Usage Guidelines

When you execute this command in configuration mode, you have to enable this command to be in port configuration mode first. When the port command is configured, you shall use the **exit** command to exit from the port mode.

KYLAND

Example

The following example shows how to enter the port mode of port g0/1.

Switch_config#

Switch_config#interface gigaEthernet0/1

```
Switch_config_g0/1#exit
```

Switch_config#

5.1.1.2 description

Syntax

[no] description line

To set the description information of a port, run the above-mentioned command.

Parameter

Parameter	Description
line	Stands for the character string of the description information, among which space may exist.

Default

There is no description information by default.

Usage Guidelines

This command is configured in port configuration mode.

Example

The following example shows how to set the description information of port g0/1 to "up link".

Switch_config# interface gigaEthernet0/1

Switch_config_g0/1# description uplink

5.1.1.3 bandwidth

Syntax

[no] bandwidth kilobps

To set the bandwidth of an interface, ran the above-mentioned command.

Parameter

Parameter	Description
kilobps	Means the bandwidth of port, which ranges from 1 to 10000000 kbps.

Default

The default bandwidths of the 100M port, gigabit port and 10G port are 100000kbps, 1000000kbps and 10000000kbps respectively.

Usage Guidelines

This command is configured in port configuration mode.

Note:

The configured bandwidth does not mean the actual bandwidth of a port, but is used by some protocol (such

as spanning tree) to calculate the port cost.

Example

The following example shows how to set port g0/1 to 10000000.

Switch_config # interface gigaEthernet0/1

Switch_config_g0/1# bandwidth 10000000

5.1.1.4 delay

Syntax

[no] delay tensofmicroseconds

To set the delay of an interface, run the above-mentioned command.

Parameter

Parameter	Description
tensofmicroseconds	Port delay. The value ranges from 1 to 10000000 (10 ms).

Default

The Default of the delay is 1.

Usage Guidelines

This command is configured in port configuration mode.

Example

The following example shows how to set the delay of an interface to 10.

Switch_config_g0/1# delay 10

5.1.1.5 shutdown

Syntax

[no] shutdown

To close a port, run **shutdown**; to restart a port, run **no shutdown**.

Parameter

None

Default

The physical port is in **enabled** status by default.

Usage Guidelines

This command can be used in port mode to enable or disable a port.

Example

The following example shows how to enable port g0/1.

Switch_config_g0/1#

Switch_config_g0/1# no shutdown

Switch_config_g0/1#

5.1.1.6 show interface

Syntax

show interface <port>

To browse the state of an interface, run the above-mentioned command.

Parameter

Parameter	Description
Port	Name of an interface If a specific port is not in the command, the system will show the statuses of all
	ports.

Default

None

Usage Guidelines

This command can be used in EXEC mode and configuration modes to show the physical status and packet reception statistics of a port.

Example

The following example shows the information about port g0/1:

Switch_config# show interface gigaEthernet 0/1

GigaEthernet0/1 is administratively down, line protocol is down

Hardware is Giga-Combo-FX, address is 00e0.0fe4.d083 (bia 00e0.0fe4.d083)

MTU 1500 bytes, BW 1000000 kbit, DLY 10 usec

Encapsulation ARPA

Auto-duplex, Auto-speed

flow-control off

5 minutes input rate 0 bits/sec, 0 packets/sec

5 minutes output rate 0 bits/sec, 0 packets/sec

Received 0 packets, 0 bytes

0 broadcasts, 0 multicasts

0 discard, 0 error, 0 PAUSE

0 align, 0 FCS, 0 symbol

0 jabber, 0 oversize, 0 undersize

0 carriersense, 0 collision, 0 fragment

0 L3 packets, 0 discards, 0 Header errors

Transmited 0 packets, 0 bytes

0 broadcasts, 0 multicasts

0 discard, 0 error, 0 PAUSE

0 sqettest, 0 deferred

0 single, 0 multiple, 0 excessive, 0 late

0 L3 forwards

5.1.1.7 show running-config interface

Syntax

show running-config interface port

To display the settings of a port, run the above-mentioned command.

Parameter

Parameter	Description
Port	Stands for the existent port.

Default

None

Usage Guidelines

This command can be executed in EXEC or configuration mode to browse the settings of a port.

Example

The following example shows the settings of port g1/1:

Switch_config#show running-config interface g0/1

Building configuration...

Current configuration:

ļ

interface GigaEthernet0/1

shutdown

description uplink

bandwidth 10000000

delay 10

Switch_config#

5.1.2 Configuration Example

The following example shows how to create a VLAN port, set its description information and IP address and browse the status and settings of this port.

Switch_config# Switch_config# interface vlan1 Switch_config_v1# description uplink Switch_config_v1# Switch_config_v1# ip address 192.168.1.1 255.255.255.0 Switch_config_v1# exit Switch_config# Switch_config# show running-config interface vlan1 Building configuration... Current configuration: ļ interface VLAN1 description uplink ip address 192.168.1.1 255.255.255.0 Switch_config# show interface vlan1 VLAN1 is up, line protocol is down **Description uplink** Hardware is EtherSVI, Address is 00e0.0fe4.d06a(00e0.0fe4.d06a) Interface address is 192.168.1.1/24 MTU 1500 bytes, BW 1000000 kbit, DLY 2000 usec **Encapsulation ARPA** ARP type: ARPA, ARP timeout 04:00:00 Peak input rate 0 pps, output 0 pps 0 packets input, 0 bytes Received 0 broadcasts, 0 multicasts 0 mpls unicasts, 0 mpls multicasts, 0 mpls input discards 0 input errors, 0 input discards 0 packets output, 0 bytes Transmited 0 broadcasts, 0 multicasts 0 mpls unicasts, 0 mpls multicasts, 0 mpls output discards 0 output errors, 0 discards Switch config#

6 Interface Range Commands

6.1 Interface Range Command

6.1.1 Interface Range

Syntax

interface range type slot/<port1-port2 | port3>[, <port1-port2|port3>]

Parameter

Name	Description	Range
type	Port type	All legal port types, except management ports on the main board of the rackmount switch.
slot	Slot number	All legal slot number.
port1	Beginning value of the port number	All legal port numbers on the slot.
port2	Ending value of the port number	All legal port numbers on the slot except for port 1.
port3	A single port.	All legal port numbers on the slot.

Default

None

Usage Guidelines

Use this command to enter the interface range mode.

Example

Use the following command to enter the enterface configuration mode, including the Ethernet ports 1, 2, 3 and 4:

switch_config# interface range gigaEthernet 0/1-4

switch_config_if_range#

Note:

There are no space on either side of "-" and ","

7 Interface Physical Characteristic Configuration Commands

7.1 Interface Physical Characteristic Configuration Commands

7.1.1 Interface Physical Characteristic Commands

Interface physical characteristic configuration commands include:

- speed
- duplex
- flow-control

7.1.1.1 speed

Syntax

```
speed {10 | 100 | auto } (T port)
speed {100 | 1000 | auto } (SFP port)
```

no speed

To configure the speed for the interface, use the **speed** command.

Parameter

Parameter	Description
10, 100,1000	Configures the interface speed as 10M, 100M, 1000M.
auto	Enable the auto-negotiation capability of the interface.

Default

TX interface is auto-negotiation operation, 100M optical interface speed is 100M, gigabit optical interface speed is 1000M.

Usage Guidelines

Use this command in the layer 2 interface configuration mode.

Note:

The speed of the optical interface is fixed. By default, the auto-negotiation function on the Gigabit optical interface is enabled. The combo port does not support forced gigabit and full duplex simultaneously. Ordinary TX interface does not support speed 1000.

Example

The following example sets the interface g0/1 speed to 100M:

Switch_config# interface g0/1

Switch_config_g0/1# speed 100

7.1.1.2 duplex

Syntax

duplex {auto | full | half }

no duplex

To configure the duplex operation on an interface, use the duplex command.

Parameter

Parameter	Description
auto	Specifies the auto-negotiation operation.
full	Specifies the full-duplex operation.
half	Specifies the half-duplex operation.

Default

TX interface is auto-negotiation operation, optical interface is full-duplex operation.

Usage Guidelines

Use this command in the layer 2 configuration mode.

Note:

The duplex operation of the optical interface is fixed, that is full-duplex operation. The combo port doesn't support both gigabit and full-duplex operation. In half-duplex mode, back pressure occurs.

Example

The following example configures interface g0/1 to full-duplex operation:

Switch_config# interface g0/1

Switch_config_g0/1# duplex full

7.1.1.3 flow-control

Syntax

flow-control { on | off | auto}

To configure flow control on an interface, use the flow control command.

Parameter

Parameter	Description
on	Enables flow control
off	Disables flow control.
auto	Auto-negotiation mode.

Default

Disabled

Usage Guidelines

Use this command in the layer 2 configuration mode.

Note:

Both "flow-control auto" and "flow-control on" are forced to receive flow-control frame. But in "auto" mode, the flow-control frame is sent only after successful negotiation with the opposite end.

Example

The following example enables the flow-control on the g0/1 interface:

Switch_config#int g0/1

Switch_config_g0/1#flow-control on

8 Port Additional Characteristics Configuration Commands

8.1 Port Additional Characteristics Configuration Commands

8.1.1 Configuring Port Isolation

8.1.1.1 port-protected

Syntax

[no] port-protected group-id

Configure a port isolation group with the above command.

Parameter

Parameter	Description
group-id	Configure a port isolation group 1-28.

Default

None

Usage Guidelines

Configure the command in global configuration mode for the group-based isolation.

Example

Configure the port isolation group 1. Switch_config#port-protected 1

8.1.1.2 description

Syntax

description *word* Configure description of the port isolation group with the above command.

no description

Delete description with the above command.

Parameter

Parameter	Description
-----------	-------------

Word	Configure description of the port isolation group, no more
word	than 31 characters.

Default

None

Usage Guidelines

Configure the command in global configuration mode for the description.

Example

The following example shows how to configure description g1 of the port isolation group 1. Switch-config-p1#description g1

8.1.1.3 switchport protected

Syntax

switchport protected <group-id>
no switchport protected
Configure the port isolation with the above command.

Parameter

Parameter	Description
group-id	Choose the port isolation 1-28

Default

None

Usage Guidelines

The command works in the layer-2 interface. The default command is based on the non-group isolation that does not need to configure group-id in the end. If the command is based on group-based isolation, all ports need to configure group-based isolation in global configuration mode. Only after deleting isolations in all ports, the isolation type can be configure again.

Example

The following example shows how to configure the non-group based isolation on interface g0/1. Switch_config_g0/1#switchport protected

8.1.2 Configuring Storm-control

Syntax

storm-control {broadcast | multicast | unicast} threshold count

no storm-control {broadcast | multicast | unicast} threshold Parameter

Configure the storm control function of the port.

Parameter

Parameter	Description
broadcast multicast	Defines the storm control of the broadcast, multicast and
unicast	unicast.
count	Defines the maximum flow of the storm control. The value
	ranges from 1 to 16384.

Default

The storm control function is not enabled.

Usage Guidelines

This command works in layer-2 port configuration mode.

Example

Set the storm control of the unknown unicast frame on interface g0/1 to 20PPS. Switch_config#interface g0/1 Switch_config_g0/1#storm-control unicast threshold 20

8.1.3 Configuring Switchport Rate-limit

Syntax

switchport rate-limit {band | bandwidth percent} { ingress | egress} no switchport rate-limit{ ingress | egress}

Configure the flow rate limitation for the port.

Parameter

Parameter	Description
Band	Flow rate. 64kbps-step rate limitation on a port
percent	Flow rate ratio, unit: 1%.
ingress	Functions at the ingress port.

egress Functions at the egress port.

Default

The port has no port rate limitation.

Usage Guidelines

This command works in layer-2 port configuration mode.

Example

Set the incoming flow rate limitation on interface g0/1 to 1Mbps. Switch_config#interface g0/1 Switch_config_g0/1#switchport rate-limit 16 ingress

8.1.4 Configuring Port Loop Check

Syntax

[no] keepalive second

To configure the interval for a port to transmit the loop check packets, run keep alive command.

Parameter

Parameter	Description
Second	Time interval. Unit: second.

Default

The time interval is 12 seconds by default.

Usage Guidelines

Configure in the physical port configuration mode.

Example

The following example shows how to set the transmission interval on interface g0/1 to 10 seconds.

Switch_config#interface g0/1

Switch_config_g0/1#keepalive 10

8.1.5 Configuring Port MAC-address learning

Syntax

[no] switchport disable-learning

Configure the learning MAC address on the port.

Parameter

None

Default

Enable the learning MAC address on the port.

Usage guidelines

Configure in the physical port configuration mode.

Example

The following example shows how to disable MAC address learning on the interface g0/1.

Switch_config#interface g0/1

Switch_config_g0/1#switchport disable-learning

8.1.6 Configuring Port Security

Port security commands include:

- (1) switchport port-security mode
- (2) switchport port-security dynamic
- (3) switchport port-security static
- (4) switchport port-security sticky

8.1.6.1 switchport port-security mode

Syntax

switchport port-security mode {dynamic | static accept/reject | sticky}

[no] switchport port-security mode

Set the static mode of the security port.

Parameter

None

Default

The port security function is not enabled.

Usage guidelines

Configure the command on the physical port configuration mode.

Example

The following example shows how to configure interface g0/1 in the dynamic interface security mode. Switch_config#inter g0/1

Switch_config_g0/1#switchport port-security mode dynamic

8.1.6.2 switchport port-security dynamic

Syntax

switchport port-security dynamic maximum dynamic_number

[no] switchport port-security dynamic maximum

To configure the maximum number of MAC addresses when the port is in dynamic security mode, run **switchport port-security dynamic maximum** command.

Parameter

Parameter	Description	Value ranges
dynamic_number	Means the maximum number of MAC addresses.	1-2048

Default

The number of MAC addresses that can be learned is 1.

Usage guidelines

Configure the command on the physical port configuration mode.

Example

The following example shows how to apply maximum MAC addresses on interface g0/1 and set the learnable MAC address to 10.

Switch_config#inter g0/1

Switch_config_g0/1# switchport port-security dynamic maximum 10

8.1.6.3 switchport port-security static mac-address

Syntax

[no] switchport port-security static mac-address H.H.H Configure the static MAC address of the security port.

Parameter

None

Default

None

Usage Guidelines

Configure the command on the physical port configuration mode.

Example

The following example shows how to configure mac: 0001.0002.0003 to static security mac.

Switch_config#inter g0/1

Switch_config_g0/1# switchport port-security static mac-address 1.2.3

8.1.6.4 switchport port-security sticky

Syntax

Switchport port-security sticky {maximum sticky_number | mac-address H.H.H | aging-time aging_time } [no] switchport port-security sticky {maximum | mac-address H.H.H | aging-time } Configure the port-security sticky of MAC address.

Parameter

Parameter	Description	
sticky_number	The maximum number of addresses that can be learned on	
	the port. Default is 100, range: 1-2048	
Н.Н.Н	Mac address	
aging_time	Aging time. Unit: minutes. The default is 0, the range:	
	0-100	

Default

The port sticky of MAC address is not enabled.

Usage Guidelines

Configure the command on the physical port configuration mode.

Example

The following example shows how to manually configure mac: 4433.0002.0021 to security sticky mac address.

Switch_config#inter g0/1

Switch_config_g0/1# switchport port-security sticky mac-address 4433.0002.0021

8.1.7 Configuring Port Binding

Syntax

switchport port-security bind|block {ip|arp|both-arp-ip ip-addr| mac mac-addr }
no switchport port-security bind|block {ip|arp| both-arp-ip ip-addr mac mac-addr}
To bind a MAC address to an IP address, run the first one of the above commands.
To cancel the address binding one by one or to exit the port binding state by cancelling all addresses on the port,
run the no form of the command.

Parameter

Parameter	Description	Value ranges
ip-addr	IP address	A.B.C.D
Mac-addr	Mac address	Н.Н.Н

Default

None

Description

This command works in layer-2 port configuration mode.

The port binding function is forbidden by default. However, if one address is bound, the port is then in binding state unless you use the negative form of this command to clear all bound address items.

Example

The following example shows how to bind IP address 1.2.3.4 to MAC address 0001.0001.1111 on interface g0/1 to decline the IP packets and ARP packets from the bound address.

Switch_config#inter g0/1

Switch_config_g0/1# switchport port-security block both-arp-ip 1.2.3.4 mac 0001.0001.1111

8.1.8 Configuring SVL/IVL

Syntax

[no]vlan shared-learning The command is used to configure share vlan learning (SVL).

Parameter

None

Default

Configure Independent Vlan Learning (IVL) on the port.

Usage Guidelines

Configure the command in global configuration mode.

Example

The following example shows how to configure shared learning.

Switch_config#vlan shared-learning

8.1.9 Configuring Link Scan

Syntax

[no] Link scan [normal | fast] interval

To set the scan interval of an interface, run the above command.

Parameter

Parameter	Description
[normal fast]	Normal: standard link scan mode
	Fas: fast link scan mode
interval	Scan interval, unit: 1ms, 10-1000

Default

The default scan interval in the standard mode is 500ms; The default scan interval in the fast mode is 10ms.

Usage Guidelines

Configure the command in global configuration mode. The Fast mode is mainly used for collaborating with the protocol, such as RSTP. Discover the interface up/down in the normal mode.

Example

The following example shows how to set the scan interval of a switch to 20ms. Link scan normal 20

8.1.10 Configuring Port Enhanced Link Status Check

Syntax

[no] switchport enhanced-link

To enable/disable status check of the port enhanced link, run the above command.

Parameter

None

Default

Disable status check of the port enhanced link.

Usage Guidelines

Configure the command in port configuration mode.

Example

The following example shows how to enable status check of the port g0/1 enhanced link. Switch_config#interface g0/1

Switch_config_g0/1#switchport enhanced-link

8.1.11 Configuring System mtu

Syntax

[no] system mtu mtu

The command is used to configure mtu.

Parameter

Parameter	Description	
mtu	Configures system mtu, the value ranges from 1500 to 9216.	

Default

The default mtu is 1500 bytes.

Usage Guidelines

Configure the command in the global configuration mode.

Example

The following example shows how to configure mtu to 2000 bytes. Switch#config

Switch_config#system mtu 2000

9 Port Mirroring Configuration Commands

9.1 Configuring Port Mirroring Commands

9.1.1 Port Mirroring Configuration Commands

The following are port mirroring configuration commands:

- mirror
- show mirror

9.1.1.1 mirror

Syntax

[no] mirror session session_number {destination {interface interface-id } { rspan vid tpid} | source {interface interface-id [, | -] [rx | tx | both] } The command is used to configure port mirroring.

Parameters

Parameter	Description	
session_number	Number of port mirroring, whose value ranges from 1 to 4.	
destination	Information about the destination port mirroring	
vid	Vid of remote mirror tag	
tpid	Tpid of remote mirror tag	
source	Information about the mirrored port	
rx tx both	Data flow that will be mirrored	
	rx means that the input data is mirrored. tx means that the	
	output data is mirrored. both means that input and output	
	data are mirrored.	

Default

None

Usage Guidelines

Configure the command in the global configuration mode.

Note:

When the unknown unicasts, broadcast and other unknown unicast output the mirrored data, configure mirror session 1 as a source port.

Example

Local mirror: The following example shows how to configure interface g0/2 to the output mirror of interface g0/1.

Switch_config# mirror session 1 destination interface g0/2

Switch_config# mirror session 1 source interface g0/1

Remote mirror: The following example shows how to configure interface g0/2 to the local output mirror

port of interface g0/1. The remote mirror vlan is 100, and the tpid is 0x8100.

Switch_config# mirror session 1 destination interface g0/2 rspan 100 0x8100

Switch_config# mirror session 1 source interface g0/1

9.1.1.2 show mirror

Syntax

show mirror [session session_number]
It is used to display the port mirroring information.

Parameter

Parameter	Description
session_number	Number of port mirroring, value range from 1 to 4.

Default

None

Usage Guidelines

It is used to display the port mirroring information.

Example

The following example shows how to display the port mirroring information of the session 1.

Switch_config#show mirror session 1

Session 1

Destination Ports: g0/3

Source Ports:

RX Only:	None
TX Only:	None
Both:	g0/2

10 MAC Address Table Characteristics Configuration Commands

10.1 MAC Address Configuration Commands

10.1.1 MAC Address Configuration Commands

10.1.1.1 mac address-table static

Syntax

To add/delete a static MAC address, use the **mac address-table static** command. [**no**] **mac address-table static** *mac-addr* **vlan** *vlan-id* **interface** *interface-id*

Parameters

Parameter	Description	
mac-addr	MAC address. Value format: H.H.H.	
vlan-id	Vlan id of the MAC address, in the range from 1 to 4094.	
interface-id	Interface id of the MAC address.	

Default

None

Command Mode

Global configuration mode

Example

The following example binds the MAC address 0004.5600.67ab to the interface g0/2 of VLAN 1:

 $Switch_config \# \ mac \ address-table \ static \ 0004.5600.67 ab \ vlan \ 1 \ interface \ g0/2$

10.1.1.2 mac address-table aging-time

Syntax

To configure the maximum aging time for MAC address table. mac address-table aging-time [0 | 10-1000000]

Parameters

Parameter	Description	
0	The aging time for MAC address table is disabled.	
10-1000000 The aging time (in seconds) for MAC address ta		

Default

300s

Command Mode

Global configuration mode

Example

The following example configures the aging time for MAC address table to 100 seconds:

Switch_config# mac address-table aging-time 100

10.1.1.3 mac address-table blackhole

Syntax

To add/ delete a blackhole MAC address. [no] mac address-table blackholemac-addr vlan vlan-id

Parameters

Parameter	Description	
mac-addr	MAC address. Value format: H.H.H.	
vlan-id	VLAN ID, in the range from 1 to 4094.	

Default

None

Usage Guidelines

Global configuration mode

Example

The following example shows how to binds the MAC address 0004.5600.67ab to the mac blackhole of VLAN 1:

Switch_config# mac address-table blackhole 0004.5600.67ab vlan 1

10.1.1.4 show mac address-table

Syntax

To display the content of the switch MAC address table, use the **show mac address-table** command.

show mac address-table [dynamic [interface interface-id | vlan vlan-id] | static | brief | multicast | interface interface-id | vlan vlan-id | H.H.H | blackhole]

Parameters

Parameter	Description	
dynamic	The dynamic MAC address table.	
interface-id	Interface name	
vlan-id	VLAN ID, in the range from 1 to 4094.	
static	The static MAC address table.	
brief	Brief information of Mac address	
multicast	Multicast of mac address table	
Interface	Interface of mac address table	
Vlan	Mac address table in VLAN	
н.н.н	Specific address	
Blackhole	Blackhole of mac address table	

Default

None

Usage Guidelines

The command is used to display MAC address table.

Example

The following example displays all dynamic MAC address tables: Switch_config#show mac address-table

Mac Address Table (Total 2)

Vlan	Mac Address	Туре	Ports
1	0026.5a7c.fad3	DYNAMIC	g0/2

10.1.1.5 clear mac address-table

Syntax

To delete a dynamic MAC address, use the **clear mac address-table clear mac address-table** dynamic [address *mac-addr* | interface *interface-id* | vlan *vlan-id*]

Parameter

Parameter	Description	
mac-addr	The MAC address. Value range: H.H.H.	
interface-id	Layer 2 interface name.	
vlan-id	VLAN ID, in the range from 1 to 4094.	

Default

None

Command Mode

Use the command in the management mode.

Example

The following example deletes all MAC addresses that acquire dynamically on interface g0/2:

Switch# clear mac address-table dynamic interface g0/2

11 MAC Address List Characteristic Configuration Commands

11.1 MAC Access List Configuration Commands

11.1.1 MAC Access List Configuration Commands

Mac access list configuration commands include:

- mac access-list
- permit
- deny
- mac access-group

11.1.1.1 mac access-list

Syntax

To add a MAC access list, use the **mac access-list** command. To delete a MAC access list, use the **no mac access-list** command.

[no] mac access-list name

Parameter

Parameter	Description
name	MAC access list name.

Default

If there is any entry is configured, one **deny any any** will be added at the end by default, and it is not displayed.

Command Mode

Global configuration mode

Example

The following example establishes MAC access list named mac-acl:

Switch-config# mac access-list mac-acl

Switch-config-macl#

11.1.1.2 permit

Syntax

To add a permit entry to the MAC access list, use the **permit** command. To delete a permit entry to the MAC access list, use the **no permit** command.

[no] permit {any | host src-mac-addr | src-mac-addr src-mac-mask } {any | host dst-mac-addr | dst-mac-addr dst-mac-mask}[arp [{any | src-ip-addr} {any | dst-ip-addr }] | ethertype | cos value]

Parameter

Parameter	Description	Value range
any	Any value	-
host	Host	-
src-mac-addr	Source MAC address	Н.Н.Н
src-mac-addr-mask	Source MAC address mask	Н.Н.Н
dst-mac-addr	Destination MAC address	Н.Н.Н
dst-mac-addr-mask	Destination MAC address mask	Н.Н.Н
arp	Matched arp message	-
src-ip-addr	Source IP address	A.B.C.D
dst-ip-addr	Destination IP address	A.B.C.D
ethertype	Types of the matching ethernet	0x0600-0xFFFF
	data packet.	
cos value	Header mark of message	0-7

Default

Deny all.

Command Mode

MAC access list configuration mode

Example

The following example shows how to permit host whose source MAC address is 1234.5678.abcd:

Switch-config-macl#permit host 1234.5678.abcd any

11.1.1.3 deny

Syntax

To add/ delete a deny entry to the MAC access list, use the following command.

[no] deny {any | host src-mac-addr | src-mac-addr src-mac-mask } {any | host dst-mac-addr | dst-mac-addr

dst-mac-mask}[arp [{any | src-ip-addr} {any | dst-ip-addr }] | ethertype | cos value]

Parameter

Parameter	Description	Value range
any	Any value	-
host	Host	-
src-mac-addr	Source MAC address	H.H.H
src-mac-addr-mask	Source MAC address mask	H.H.H
dst-mac-addr	Destination MAC address	H.H.H
dst-mac-addr-mask	Destination MAC address mask	H.H.H
arp	Matched arp message	-
src-ip-addr	Source IP address	A.B.C.D
dst-ip-addr	Destination IP address	A.B.C.D
ethertype	Types of the matching ethernet	0x0600-0xFFFF
	data packet.	
cos value	Header mark of message	0-7

Default

Deny all.

Comamnd mode

MAC access list configuration mode

Example

The following example shows how to deny host whose source MAC address is 1234.5678.abcd:

Switch-config-macl#deny host 1234.5678.abcd any

11.1.1.4 mac access-group

Syntax

Apply the configured MAC access list in interface configuration mode or global configuration mode, or delete the MAC access list applied in interface configuration mode or global configuration mode.

Global configuration mode:

mac access-group name [vlan {word | add word | remove word}]

[no] mac access-group name [vlan]

Interface configuration mode:

[no] mac access-group name

Parameter

Parameter	Description
name	Name of the MAC access list.
Vlan	The access list is applied to the inbound VLAN.
Word	VLAN range table
add	Add vlan range table
remove	Remove vlan range table

Default

No MAC access list is applied.

Command Mode

Use the command in layer-2 global or interface configuration mode. If the access list does not exist, an access list with no rule will be created.

Example

The following example shows how to configure MAC access list named macacl on interface g0/1:

Switch_config_g0/1#mac access-group macacl

12 802.1x Configuration Commands

12.1 Chapter 1 802.1x Configuration Commands

12.1.1 802.1x Configuration Commands

802.1x configuration commands include:

- 1) dot1x enable
- 2) dot1x port-control
- 3) dot1x authentication multiple-hosts
- 4) dot1x authentication multiple-auth
- 5) dot1x default
- 6) dot1x reauth-max
- 7) dot1x re-authentication
- 8) dot1x timeout quiet-period
- 9) dot1x timeout re-authperiod
- 10) dot1x timeout tx-period
- 11) dot1x mab
- 12) dot1x mabformat
- 13) dot1x user-permit
- 14) dot1x authentication method
- 15) dot1x accounting enable
- 16) dot1x accounting method
- 17) dot1x authen-type, dot1x authentication type
- 18) dot1x guest-vlan
- 19) dot1x guest-vlan id
- 20) dot1x forbid multi-network-adapter
- 21) dot1x keepalive
- 22) aaa authentication dot1x
- 23) debug dot1x error
- 24) debug dot1x state
- 25) debug dot1x packet
- 26) show dot1x

12.1.1.1 dot1x enable

Syntax

dot1x enable no dot1x enable

Parameter

None

Default

None

Usage Guidelines

Use this command to enable 802.1x feature. The 802.1x feature cannot be enabled on an interface. If 802.1x feature is disabled, then all 802.1x packets will be forwarded like other multi-cast packets in VLAN rather than be received by CPU.

Command Mode

Global Configuration Mode

Example

The following example shows how to enable dot1x: Switch_config#dot1x enable Switch_config #

12.1.1.2 dot1x port-control

Syntax

dot1x port-control {auto|force-authorized|force-unauthorized|misc-mab}

no dot1x port-control

Parameter

Parameter	Description
auto	Enables 802.1x protocol authentication method
force-authorized	Forced port authentication passed.
force-unauthorized	Forced port authentication failed.
Misc-mab	Hybrid mode for multi-user and mab authentication.

force-authorized

Usage Guidelines

The 802.1x protocol is an interface-based two-layer authentication mode. You can run the auto command to enable the authentication mode. This authentication mode can be configured only on the physical interface and the interface's attributes cannot include VLAN backbone, dynamical access, security port or listening port.

Command Mode

Interface configuration mode

Example

The following example enables 802.1x on interface g0/1

Switch_config _g0/1# dot1x port-control auto

Switch_config _g0/1#

The following example configures interface g0/1 as the vlan trunk port and enables 802.1X.

- Switch_config _g0/1#switchport mode trunk
- Switch_config _g0/1#dot1x port-control auto
- 802.1x Control Failed, 802.1x cannot cmd on vlanTrunk port(g0/1)

Switch_config _g0/1#

12.1.1.3 dot1x authentication multiple-hosts

Syntax

dot1x authentication multiple-hosts no dot1x authentication multiple-hosts

Parameter

None

Default

Disable the multiple authentication of 802.1x.

Usage Guidelines

Set one port to the multi-hosts mode of 802.1x, and the switch will authenticate different users. When one user passes the authentication, the port sets to the "up" state. Other users can access the port without authentication.

Note: After modifying the multi-host authentication mode, all users of the port will be authenticated again.

Command Mode

Interface configuration mode

Example

The following example enables multiple-hosts authentication on interface g0/1:

Switch_config _g0/1# dot1x authentication multiple-hosts

Switch_config _g0/1#

12.1.1.4 dot1x authentication multiple-auth

Syntax

dot1x authentication multiple-auth no dot1x authentication multiple-auth

Parameter

None

Default

Disable the multiple authentication of 802.1x.

Usage Guidelines

After set one interface to the multiple-auth mode of 802.1x, the switch will set authentication for each user. The authentication for each user is unrelated. The interface shows "up" only when one user is successfully authenticate; the interface shows "down" when all users fail to authenticate. Thus, each user is respectively authenticated and any user's failure of authentication has no effect on the authority of other users.

Note: The multi-auth mode cannot be configured with guest vlan, nor with mab. To modify the multi-host mode, all user need to be re-authenticated.

Command Mode

Interface configuration mode

Example

The following example shows how to enable multiple-auth in interface g0/1:

 $\label{eq:switch_config_g0/1 \ \ dot1x\ \ authentication\ \ multiple-auth$

Switch_config _g0/1#

12.1.1.5 dot1x default

Syntax

dot1x default

Parameter

None

Default

None

Usage Guidelines

The command is used to return all configuration to the default setting.

Command Mode

Global Configuration Mode

Example

The command shows how to return all configurations of dot1x to the default setting.

Switch_config #dot1x default

Switch_config #

12.1.1.6 dot1x reauth-max

Syntax

dot1x reauth-max count

no dot1x reauth-max

Parameter

Parameter	Syntax
count	Maximum number of retries. The value is from 1 to 10.

Default

5

Usage Guidelines

Use this command to set maximum number of re-authentications. The authentication will be suspended when there is no response from client on exceeding the number of this configured re-authentication times.

Command Mode

Global configuration mode

Example

The following example set 4 as the maximum number of re-authentications: Switch_config #dot1x reauth-max 4 Switch_config #

12.1.1.7 dot1x re-authentication

Syntax

dot1x re-authentication

no dot1x re-authentication

Parameter

None

Default

None

Usage Guidelines

You configure the amount of time between the periodic re-authentication attempts by using the **dot1x timeout re-authperiod** global configuration command.

Command Mode

Global configuration mode

Example

This example shows how to enable the periodic re-authentication: Switch(config)#dot1x re-authentication Switch(config)#

12.1.1.8 dot1x timeout quiet-period

Syntax

dot1x timeout quiet-period *time* no dot1x timeout quiet-period

Parameter

Parameter	Syntax									
time	Period	of	re-enabling	authentication,	in	the	range	from	0	to
	65535 s	ecol	nds							

Default

60s

Usage Guidelines

There will be a period of quiet time after authentication failure during which switch doesn't receive or enable any authentication.

Command Mode

Global configuration mode

Example

The following example configures quiet period value to 40: Switch_config #dot1x timeout quiet-period 40 Switch_config #

12.1.1.9 dot1x timeout re-authperiod

Syntax

dot1x timeout re-authperiod *time* no dot1x timeout re-authperiod

Parameter

Parameter	Descriptio
time	Period of re-authentication, in the range from 1 to
	4294967295 seconds

Default

3600s

Usage Guidelines

This command is valid only after enabling the dot1x re-authentication command.

Command Mode

Global configuration mode

Example

The following example configures dot1x re-authentication period to 7200s: Switch_config # dot1x timeout re-authperiod 7200 Switch_config #

12.1.1.10 dot1x timeout tx-period

Syntax

dot1x timeout tx-period *time* no dot1x timeout tx-period

Parameter

Parameter	Description
time	Time is from 1 to 65535s.

30s

Usage Guidelines

This command specifies the time interval of the host client to respond to the authentication request. The switch will resend the authentication request when exceeding this time interval.

Command Mode

Global Configuration Mode

Example

The following command sets 24 as the timeout period: Switch(config_f0/0)# dot1x timeout tx-period 24 Switch(config_f0/0)#

12.1.1.11 dot1x mab

Syntax

dot1x mab no dot1x mab

Parameter

None

Default

Disabled

Usage Guidelines

When a peer device cannot run the 802.1x client software, the switch will adopt the MAB authentication mode and then the MAC address of the peer device will be sent as both the username and password to the radius server for authentication.

When MAB is enabled and the peer device, however, neither sends the eapol_start packet nor responds to the request_identity packet and exceeds the timeout threshold, the switch regards the peer device not to support the 802.1x authentication client and then turns to the MAB authentication.

Note: The multi-auth mode cannot coexist with guest vlan or mab.

Command Mode

Interface Configuration Mode

Example

The following example shows how to enable mab authentication in interface g0/1. Switch_config _g0/1# dot1x mab Switch_config _g0/1#

12.1.1.12 dot1x mabformat

Syntax

dot1x mabformat {1|2|3|4|5|6} no dot1x mabformat

Parameter

Parameter	Description
1	MAC address format: aa:bb:cc:dd:ee:ff
2	MAC address format: AA:BB:CC:DD:EE:FF
3	MAC address format: aabbccddeeff
4	MAC address format: AABBCCDDEEFF
5	MAC address format: aa-bb-cc-dd-ee-ff
6	MAC address format: AA-BB-CC-DD-EE-FF

Default

The default is 1.

Usage Guidelines

When the MAB authentication is enabled, you can set the format of the MAC address to the Radius server through this command.

Command Mode

Global configuration mode

Example

The following example shows how to configure the mac format as 3. Switch_config # dot1x mabformat 3 Switch_config #

12.1.1.13 dot1x user-permit

Syntax

dot1x user-permit xxx yyy zzz no dot1x user-permit

Parameter

Parameter	Syntax
ххх	Username
ууу	Username
ZZZ	Username

Default

All users are allowed to pass without user-bind.

Usage Guidelines

Use this command to bind user on the interface, eight users can be binded on each interface. When enabled 802.1x authentication, the authentication is only available to the binding user.

Command Mode

Interface configuration mode

Example

The following example configures a,b,c,d as the binding user on interface g0/1: Switch_config _g0/1# dot1x user-permit a b c d Switch_config _g0/1#

12.1.1.14 dot1x authentication method

Syntax

dot1x authentication method xxx no dot1x authentication method

Parameter

Parameter	Description
ХХХ	Method name.

The default method.

Usage Guidelines

This command is used to configure the authentication method which must be one of authentication methods provided by AAA. One interface only uses one authentication method. When AAA performs authentication to the 802.1x user, AAA would select the configured authentication method to perform the authentication.

Command Mode

Interface configuration mode

Example

The following example shows that how to set the authentication method of g0/1 to abcd. The method applies the local user name to authenticate. In interface g0/2 set the authentication method to efgh. The method applies radius remote authentication. Switch_config #aaa authentication dot1x abcd local Switch_config #aaa authentication dot1x efgh group radius Switch_config #int g0/1 Switch_config _g0/1# dot1x authentication method abcd Switch_config _g0/1# int g0/2 Switch_config _g0/2# dot1x authentication method efgh

12.1.1.15 dot1x accounting enable

Syntax

dot1x accounting enable no dot1x accounting enable

Parameter

None

Default

Disabled

Usage Guidelines

Use this command to enable accounting feature on the interface. This command must combine with the authentication feature. You'd better enable dotx re-authentication feature.

Command Mode

Interface Configuration Mode

Example

The following command enables the dot1x authentication and accounting feature of interface g0/1: Switch_config #dot1x enable Switch_config #int g0/1 Switch_config _g0/1# dot1x port auto Switch_config _g0/1# dot1x accounting enable

12.1.1.16 dot1x accounting method

Syntax

dot1x accounting method xxx no dot1x accounting method

Parameter

Parameter	Syntax
ххх	Accounting method name

Default

"default" method.

Usage Guidelines

Use this command to configure the accounting method on an interface. This method is one of the accounting methods that AAA provides. Each interface only uses one method. When enabled dot1 accounting feature, this method will be used to perform accounting.

Command Mode

Interface configuration mode

Example

The following example configures abcd as the accounting method on interface g0/1 and this method uses radius server: Switch_config # aaa accounting network abcd start-stop group radius Switch_config #radius host 192.168.20.100 Switch_config #int g0/1

Switch_config _g0/1# dot1x accounting method abcd

12.1.1.17 dot1x authen-type, dot1x authentication type

Syntax

dot1x authen-type {chap|eap}

no dot1x authen-type

To set the authentication type in global configuration mode, run the above command. To return to the

default setting, use the no form of this command.

dot1x authentication type {chap|eap}

no dot1x authentication type

To set the authentication type in interface configuration mode, run the above command. To return to the

default setting, use the no form of this command.

Parameter

None

Default

Eap in global configuration mode. Default authentication type of the interface is same as in the global configuration mode.

Usage Guidelines

The authentication type decides whether AAA uses the CHAP authentication or the EAP authentication. If the CHAP authentication is used, the challenge required by MD5 is locally generated; if the EAP authentication is used, the challenge is generated on the authentication server. Only one authentication mode can be applied to one interface. By default, the authentication mode is applied in global mode. When an authentication mode is configured for an interface, the authentication mode will be always used on the interface unless the negative form of the command is run to resume the default settings.

Command Mode

Interface and global configuration mode

Example

The following example shows how to set the authentication type on interface g0/1 to chap and the global authentication type to eap.

Switch_config #dot1x authen-type eap Switch_config #int g0/1 Switch_config _g0/1# dot1x authentication type chap

12.1.1.18 dot1x guest-vlan

Syntax

Enable the guest-vlan feature of the dot1x with **dot1x guest-vlan** command in global configuration mode, and disable with the no form of this command.

dot1x guest-vlan

no dot1x guest-vlan

Parameter

None

Default

Disable

Usage Guidelines

When you enable the guest-vlan command, the software will assign the corresponding port to a guest VLAN when it does not receive a response from the client. This command is used with the **dot 1x guest-valan id** interface configuration command.

Note: This command cannot be configured with multiple-auth command simultaneously.

Command Mode

Global configuration mode

Example

The following example enables guest-vlan feature in global configuration mode: Switch(config) #dot1x guest-vlan

12.1.1.19 dot1x guest-vlan id

Syntax

To configure dot1x guest-vlan id value (range from 1 to 4094) on an interface, use the **dot1x guest-vlan** command. Use the no form of this command to restore the default value. **dot1x guest-vlan** id **no dot1x guest-vlan**

Parameter

Id: guest vlan value, which can be any configured vlan id in the system.

None

Usage Guidelines

When you enable the guest-vlan command, the software will assign the corresponding port to a guest VLAN when it does not receive a response from the client.

This command is used with the dot1x guest-vlan global configuration

command.

Note: This command cannot be configured with multiple-auth command simultaneously.

Command Mode

Interface configuration mode

Example

The following example configures guest-vlan id value on the interface g0/1: Switch_config _g0/1#dot1x guest-vlan 2

12.1.1.20 dot1x forbid multi-network-adapter

Syntax

To forbid the supplicant of the multi-network-adapter, use the **dot1x** forbid multi-network-adapter command. Use no form of this command to restore the default configuration.

dot1x forbid multi-network-adapter no dot1x forbid multi-network-adapter

Parameter

None

Default

None

Usage Guidelines

Use this command to forbid the supplicant of the multi-network-adapter to avoid occurrence of the agent.

Command Mode

Interface configuration mode

Example

The following example forbids the supplicant of the multi-network-adapter on the interface g0/1:

Switch_config _g0/1 # dot1x forbid multi-network-adapter

12.1.1.21 dot1x keepalive

Syntax

dot1x keepalive

no dot1x keepalive

To enable/disable the keepalive detection for the authentication user in the global configuration mode, run the above commands.

Parameter

None

Default

Enable

Usage Guidelines

The default is to enable the keepalive detection.

Command Mode

Global configuration mode

Example

The following example shows how to disable the keepalive function. Switch_config #no dot1x keepalive Switch_config #

12.1.1.22 aaa authentication dot1x

Syntax

aaa authentication dot1x {default | word } method1 [method2...]

no aaa authentication dot1x { default | word}

Parameter

Parameter	Syntax
default	Default authentication method. Use this authentication method when you do not specify the authentication method using the dot1x authentication method command.
word	Designate the name of the authentication method
method1 [method2]	group radius/tacacs+/xxx, local, local-case, none

Default

None

Usage Guidelines

The method parameter identifies the list of methods that the authentication algorithm tries in the given sequence to validate the password provided by the client. It is best to use radius authentication for the 802.1X aaa authentication, or you can use local configuration data for authentication, such as the user password stored locally in the configuration.

Command Mode

Global configuration mode

Example

The following example configures RADIUS as the dot1x authentication method: Switch_config #aaa authentication dot1x default group radius Switch_config #

12.1.1.23 debug dot1x errors

Syntax

debug dot1x errors

Parameter

None

None

Usage Guidelines

This command is used to debug all error information during dot1x running to locate errors.

12.1.1.24 debug dot1x state

Syntax

debug dot1x state

Parameter

None

Default

None

Usage Guidelines

Output format is as follows:

2003-3-18 17:40:09 802.1x:AuthSM(G0/1) state Connecting-> Authenticating, event rxRespld 2003-3-18 17:40:09 802.1x:G0/1 Create user for Enter authentication 2003-3-18 17:40:09 802.1x:BauthSM(G0/1) state Idle-> Response, event authStart 2003-3-18 17:40:09 802.1x:G0/1 user "myname" denied, Authentication Force Failed 2003-3-18 17:40:09 802.1x:G0/1 Authentication Fail 2003-3-18 17:40:09 802.1x:BauthSM(G0/1) state Response-> Fail, event aFail

12.1.1.25 debug dot1x packet

Syntax

debug dot1x packet

Parameter

None

Default

None

KYLAND

Usage Guidelines

2003-3-18 17:40:09 802.1xG0/1 Tx --> Supplicant(0008.74bb.d21f) EAPOL ver:01, type:00, len:5 EAP code:01, id:03, type:01, len:5 00 2003-3-18 17:40:09 802.1x:G0/1 Rx <-- Supplicant(0008.74bb.d21f) EAPOL ver:01, type:00, len:10 EAP code:02, id:03, type:01, len:10 62 64 63 6f 6d a5

12.1.1.26 show dot1x

Syntax

To show 802.1x configuration information, use the **show dot1x** command. **show dot1x** [*interface intf-id* | *statistics*|*misc-mab-db*]

Parameter

Parameter	Description
interface	Shows the dot1x interface information
intf-id	The concrete physical interface.
statistics	Shows the dot1x statistics information
misc-mab-db	Shows the dot1x mixing Mab statistics information

Default

None

Usage Guidelines

This command is used to show 802.1x configuration information.

Command Mode

EXEC or configuration mode

Example

The following example shows how to display 802.1x configuration information: Switch_config#show dot1x 802.1X Parameters reAuthen No reAuth-Period 3 quiet-Period 10 Tx-Period 30 Supp-timeout 30 Server-timeout 30 reAuth-max 4 max-request 2 authen-type Eap IEEE 802.1x on port G0/1 enabled Authorized Yes Authen Type Eap Authen Methoddefault Permit Users All Users Multiple Hosts Disallowed Supplicant aaa (0008.74bb.d21f) **Current Identifier 21** Authenticator State Machine State Authenticated Reauth Count 0 **Backend State Machine** State Idle **Request Count 0** Identifier (Server) 20 Port Timer Machine Auth Tx While Time 16 Backend While Time 16 reAuth Wait Time 3 Hold Wait Time 0

13 VLAN Configuration Commands

13.1 VLAN Configuration Commands

13.1.1 VLAN Configuration Commands

VLAN configuration commands include:

- vlan
- name
- dot1q-tunnel
- switchport pvid
- switchport mode
- switchport trunk
- show vlan
- show interface vlan

13.1.1.1 vlan

Syntax

To add a VLAN, use the **vlan** command. Use the no form of this command to delete a VLAN. [**no**] **vlan** *vlan-id*

Parameter

Parameter	Description
vlan-id	ID of the VLAN. Range is from 1 to 4094.

Default

The default is 1.

Command Mode

Global configuration mode

Usage Guidelines

Use this command to enter VLAN configuration mode and to modify some attributes of the VLAN.

Example

This example shows how to add a new VLAN with its ID as 2:

Switch_config#

Switch_config#vlan 2

Switch_config_vlan2#exit

13.1.1.2 name

Syntax

To assign a name to a VLAN, use the **name** command. Use the no form of this command to remove the name assigned to a VLAN.

[no] name str

Parameter

Parameter	Description	
str	Name of the defined VLAN. The name consists of up to 32	
	characters.	

Default

The default VLAN name is 'Default'. Other VLAN name is VLANxxxx (xxxx is 4-digit stack ID)

Command Mode

VLAN configuration mode

Usage Guidelines

This command can modify VLAN name to indicate special VLAN according to special requirements.

Example

The following example shows how to modify vlan200 to main405.

Switch_config#

Switch_config#

Switch_config#vlan 200

Switch_config_vlan200#name ?

WORD The ascii name of VLAN(32bytes)

Switch_config_vlan200#name main405

13.1.1.3 dot1q-tunnel

Syntax

dot1q-tunnel

no dot1q-tunnel

The command is used to enable or disable global Dot1q Tunnel.

Parameter

None

Default

Global Dot1q Tunnel is not enabled.

Command Mode

Global configuration mode

Usage Guidelines

The command is used to enable Dot1Q Tunnel globally, turn all ports to Dot1Q Tunnel downlink ports and add SPVLAN tag to the incoming packets.

Example

The following example shows how to enable Dot1q Tunnel globally.

Switch_config#dot1q-tunnel

13.1.1.4 switchport pvid

Syntax

switchport pvid vlan-id

no switchport pvid

To configure VLAN of the access-mode port, run **switchport pvid vlan-id**.

Parameter

Parameter	Description
vlan-id	VLAN ID which the port belongs to, ranging between 1 and
	4049

All ports belong to VLAN 1.

Command Mode

Interface configuration mode

Usage Guidelines

If the vlan which pavid belongs to does not exist before the command is configured, the vlan vill be created at the same time as the pavid is genetated. The port can be in access mode or relay mode.

Example

The following example shows how to configure GigaEthernet 0/1 to the access port of VLAN 10.

Switch_config#interface g0/1

Switch_config_g0/1#switchport pvid 10

13.1.1.5 switchport mode

Syntax

To configure the interface mode, use the **switchport mode** command.

switchport mode {access | trunk | dot1q-tunnel-uplink | dot1q-translating-tunnel

no switchport mode

Parameter

Parameter	Description	
access	The access mode	
trunk	The relay mode	
dot1q-tunnel-uplink	VLAN tunnel uplink mode	
dot1q-translating-tunnel	VLAN translating tunnel mode	

Default

Access mode

Command Mode

Interface configuration mode

Usage Guidelines

OLT supports the following modes: the access mode, the relay mode, the VLAN translating tunnel mode and the VLAN tunnel uplink mode.

The access mode indicates that the port belongs to just one VLAN; only the untagged Ethernet frame can be transmitted and received.

The relay mode indicates that the port connects other switches and the tagged Ethernet frame can be transmitted and received.

The VLAN translating tunnel mode is a sub mode based on the relay mode. The port looks up the VLAN translation table according to the VLAN tag of received packets to obtain corresponding SPVLAN, and then the switching chip replaces the original tag with SPVLAN or adds the SPVLAN tag to the outside layer of the original tag. When the packets is forwarded out of the port, the SPVLAN will be replaced by the original tag or the SPVLAN tag will be removed mandatorily. Hence, the OLT omits different VLAN partitions that access the network, and then passes them without change to the other subnet that connects the other port of the same client, realizing transparent transmission.

The VLAN tunnel uplink mode is a sub mode based on the relay mode. The SPVLAN should be set when packets are forwarded out of the port. When the packets are received by the port, their TPIDs will be checked. If difference occurs or they are untagged packets, the SPVLAN tag which contains their own TPID will be added to them as their outer-layer tag.

The port mode collides with the 802.1X protocol. The 802.1X protocol cannot be configured in relay mode (including the VLAN translating tunnel mode and the VLAN tunnel uplink mode); the port on which the 802.1X protocol is configured cannot be set to the relay mode. That is to say, the 802.1X protocol can be effective only on the access-mode port (including the VLAN tunnel mode).

The 802.1X standard does not support authentication on the trunk port. The reason is that the authentication object regulated in the standard is not the port. As to port multiplexing, if user authentication is approved in one VLAN, all other VLAN users who multiplex this port are also authorized correspondingly, therefore, the trunk port does not support authentication.

Example

The following example shows how to set the port to the VLAN tunnel uplink mode:

Switch_config_g0/1#switchport mode dot1q-tunnel-uplink

13.1.1.6 switchport trunk

Syntax

To set the trunk characteristics, use the **switchport trunk** command. [no] switchport trunk { {vlan-allowed vlan-list} | {vlan-untagged vlan-list } }

Parameter

Parameter	Description

vlan-allowed	Sets the list of allowed VLANs that can receive or transmit	
	traffic on this interface. Value is from 1 to 4094.	
vlan-untagged	Sets the list of allowed VLANs that transmit traffic from this	
	interface in untagged format.Value is from 1 to 4094.	

The default native vlan ID is 1. The valid VLAN ID is from 1 to 4094 (all VLANs).

Command Mode

Interface configuration mode

Usage Guidelines

You can use this command on an interface no matter it is in access or trunk mode. But this command is valid only when the interface is in trunking mode.

The vlan-allowed parameter sets the list of allowed VLANs that transmit traffic from this interface in tagged format. The vlan-untagged parameter sets the list of allowed VLANs that transmit traffic from this interface in untagged format.

When the vlan list is used, you can add, remove or set (none, all, except) the lists of the existing VLAN. The input list is divided by "," and "-", for instance, '1, 3, 5, 7' reprents respectively "vlan 1, vlan 3, vlan 5 and vlan7"; '1, 3-5, 7' represents vlan 1, vlan 3, vlan 4, vlan 5 and vlan7.

Example

The following example configures VLAN ID range to 1-10 and trunk untagged VLAN to 2-1000.

Switch_config_g0/1#switchport trunk vlan-allowed 1-10

Switch_config_g0/1#switchport trunk vlan-untagged 2-1000

13.1.1.7 show vlan

Syntax

To display VLAN information, use the show vlan command.

show vlan [id *vlan-id* | interface *intf-id* | dot1q-tunnel [interface *intf*] |mac-vlan | subnet | protocol-vlan | dot1q-translating-tunnel]

Parameter

Parameter	Description
ld vlan-id	Displays information about the specified VLAN; valid values

	are from 1 to 4094.	
Interface Intf-id	Displays the specified interface	
dot1q-tunnel [interface	Displays global information and summary statistics of Dot1Q Tunnel, or displays Dot1Q Tunnel information of the	
	specified port.	
mac-vlan	Displays mac-based VLAN table enteries	
subnet	Displays IP subnet-based VLAN table enteries	
protocol-vlan	Displays protocol-based VLAN templates or table entries	
dot1q-translating-tunnel	Displays information on port VLAN tunnel translation	

None

Command Mode

EXEC/ All configuration modes

Usage Guidelines

None

Example

The following example shows all VLAN information:

Switch#show vlan

VLAN Status Name Ports

---- -----

1 Static Default g0/1, g0/2, g0/4.....

2 Static VLAN0002 g0/3

3 Static VLAN0003 g0/3

4 Static VLAN0004 g0/3

5 Static VLAN0005 g0/3

Status: indicates the source of VLAN. Static: indicates the VLAN is formed by configuration. Dynamic: indicates the VLAN is dynamically formed by GVRP protocol.

The following example shows the concrete information of a VLAN:

Switch#show vlan id 1

VLAN id: 1, Name: default, TotalPorts:11

Ports Atttributes

g0/1 Trunk, Untagged

g0/2 Access

The following example shows the relevant information about a VLAN on an interface:

Switch#show vlan int g0/6

Interface VLAN

Name Property PVID Vlan-Map uTagg-VLan-Map

GigaEthernet0/2 Trunk 1 3,5,7,9,11,13,15 none

17,19

Switch#show vlan int g0/7

Interface VLAN Name Property PVID Vlan-Map uTagg-VLan-Map GigaEthernet 0/3 Access 7 7 ----

13.1.1.8 show interface vlan

Syntax

show interface vlan intf-id

The above command is used to show information about VLAN Interfcae.

Parameter

Parameter	Description	Value ranges
Intf-id	Shows specified port	1-4094

Default

None

Command Mode

EXEC/ All configuration modes

Usage Guidelines

None

Example

The following example shows how to show information about Interface VLAN 1.

Switch#show int vlan 1

VLAN1 is up, line protocol is up

Hardware is EtherSVI, Address is 00e0.0f42.0071(00e0.0f42.0071)

MTU 1500 bytes, BW 1000000 kbit, DLY 2000 usec

Encapsulation ARPA, loopback not set

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

0 packets input, 0 bytes, 0 no buffer

Received 0 broadcasts, 0 multicasts

0 input errors, 0 input discards

0 packets output, 0 bytes, 0 underruns

Transmited 0 broadcasts, 0 multicasts

0 output errors, , 0 discards

ARP type: ARPA, ARP timeout 04:00:00

The statistics values are explained as follows:

Pachets input means the input of all packets, including broadcast packets, multicast packets and unicast packets.

Bytes means the byte volume of all packets.

Broadcasts means received broadcast packets.

Multicasts means received multicast packets.

Input errors means received error packets.

Input discards means that the received packets are dropped, such as the received packets when the interface protocol is down.

Pachets output means the output of all packets, including broadcast packets, multicast packets and unicast packets.

Bytes means the byte volume of all transmitted packets.

Broadcasts means transmitted broadcast packets.

Multicasts means transmitted multicast packets.

Output errors means transmitting error packets.

Output discards means that the transmitted packets are dropped, such as the transmitted packets when the interface protocol is down.

13.2 GVRP Configuration Commands

13.2.1 GVRP Configuration Commands

13.2.1.1 GVRP

Syntax

To enable GVRP globally on a device and on an interface, use the **gvrp** command. To disable GRVP, use the no form of this command.

gvrp

no gvrp

Parameter

None

Default

GVRP is disabled globally. GRVP is enabled on each interface.

Usage Guidelines

GVPRP can be enabled globally or on an interface in the system, and GVRP is not enabled until both of them are enabled.

Example

The following example configures global gvrp on the device and interfaces:

Switch_config#gvrp

Switch_config#

The following example enables gvrp on interface 1:

Switch_config_g0/1#gvrp

Switch_config_g0/1#

13.2.1.2 1.1.2 gvrp dynamic-vlan-pruning

Syntax

gvrp dynamic-vlan-pruning

no gvrp dynamic-vlan-pruning

To set the dynamic VLAN only takes effect on the registered interface, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

None

Default

Dynamic-vlan-prunning is disabled. That is, dynamic VLAN can take effect in all interfaces.

Command Mode

Global configuration mode

Usage Guidelines

After this command is enabled and, if a port has not registered a dynamic VLAN, this port will not belong to the dynamic VLAN even though this port is a trunk port and it allows the dynamic VLAN to pass through.

Example

The following example shows how to make dynamic VLAN validate on its registered port.

Switch_config#gvrp dynamic-vlan-pruning

Switch_config#

13.2.1.3 1.1.3 Show gvrp statistics

Syntax

To show gvrp statistics, use the show gvrp statistics command. **show gvrp statistics** [interface *intf-id*]

Parameter

Parameter Description		Description
	intf-id	The concrete physical interface

None

Usage Guidelines

Show GVRP statistics.

Example

The following example show GVRP statistics of port g0/1:

Switch_config#show gvrp statistics interface g0/1

GVRP statistics on port g0/1

GVRP Status : Enabled

GVRP Frames Received : 0

GVRP Frames Transmitted : 20

GVRP Frames Discarded : 0

GVRP Last Pdu Origin : 0000.0000.0000

13.2.1.4 1.1.4 Show gvrp status

Syntax

To show GVRP status information, use show gvrp status command.

show gvrp status

Parameter

None

Default

None

Usage Guidelines

Show GVRP status information.

Example

The following command shows GVRP status information of the switch:

Switch_config#show gvrp status

GVRP is enabled

13.2.1.5 1.1.5 Debug gvrp event

Syntax

To enable debugging GVRP event information, use the **debug gvrp event** command. Use the no form of this command to disable debugging.

debug gvrp event

no debug gvrp event

Parameter

None

Default

None

Usage Guidelines

Enable/disable debugging GVRP event information.

Example

Switch# debug gvrp event Switch#

13.2.1.6 1.1.6 Debug gvrp packet

Syntax

To enable debugging GVRP packet information, use the **debug gvrp event** command. Use the no form of this command to disable debugging.

debug gvrp packet

no debug gvrp packet

Parameter

None

Default

None

Usage Guidelines

Enable/disable debugging GVRP packet information.

Example

switch# debug gvrp packet
switch#

13.2.2 GARP Configuration Commands

GARP is the basic module of GVRP/GMRP. It is intended to scheduler GVRP/GMRP operation and provide services.

13.2.2.1 1.2.1 Garp timer leaveall

Syntax

To configure garp leaveall timer, use the **garp timer leaveall** command. Use the no form of this command to restore the default value.

garp timer leaveall time_value

no garp timer leaveall

Parameter

Parameter	Description				
timer_value	Global	leaveall	timer	value. Value	range: 10–32765
	centseco	onds.			

Default

1000 centiseconds

Usage Guidelines

Bridge will clear all registered VLAN information and send out LeaveAll Message after leaveall timer expires.

Example

The following example configures leaveall timer on the switch to 1200 centiseconds:

Switch_config# garp timer leaveall 1200

Switch_config#

13.2.2.2 1.2.2 garp timer hold

Syntax

garp timer hold time_value

no garp timer hold

To set grap hold timer, run the first one of the above commands. To return to the default setting,

use the no form of this command.

Parameter

Parameter	Description	
timer_value	The hold timer value of the interface. The value ranges	
	from 10 to 32765 centiseconds.	

Default

10 centiseconds

Command Mode

Interface configuration mode

Usage Guidelines

None

Example

The following example shows how to set the garp hold timer on the interface g0/1 to 15

centiseconds.

Switch_config_g0/1#garp timer hold 15

Switch_config_g0/1#

13.2.2.3 1.2.3 garp timer join

Syntax

garp timer join time_value

no garp timer join

To set garp join timer, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description	
timer_value	The join timer value of the interface. The value ranges	
	from 10 to 32765 centiseconds.	

Default

20 centiseconds

Command Mode

Interface configuration mode

Usage Guidelines

None

Example

The following example shows how to set garp join timer on interface g0/1 to 25 centiseconds.

Switch_config_g0/1#garp timer join 25

Switch_config_g0/1#

13.2.2.4 1.2.4 garp timer leave

Syntax

garp timer leave time_value

no garp timer leave

To set garp leaver timer, run the first one of the above commands. To return to the default setting,

use the no form of this command.

Parameter

Parameter	Description
timer_value	The leave timer value of the interface. The value ranges from 10 to 32765 centiseconds.

Default

60 centiseconds

Command Mode

Interface Configuration Mode

Usage Guidelines

None

Example

The following example shows how to set the value of the garp leave timer on interface g0/1 to 80

centiseconds.

Switch_config_g0/1#garp timer leave 80

Switch_config_g0/1#

13.2.2.5 1.2.5 show garp timers

Syntax

show garp timers [interface intf_id]

To show the GARP-configured clock information, run the above command.

Parameter	Description
intf-id	The concrete physical port.

None

Usage Guidelines

This command is used to display the GARP-configured clock information, including the global leaveall timer value, the hold/join/leave timer value on the port.

Example

The following example shows how to show the timer configuration information on interface G0/1.

Switch# show garp timers interface g0/1

GARP timers on port 1(G0/1)

Garp Join Time	: 20 centiseconds
Garp Leave Time	: 60 centiseconds
Garp LeaveAll Time	: 1000 centiseconds
Garp Hold Time	: 10 centiseconds

13.2.2.6 1.2.6 Show garp status

Syntax

To show the currently-running garp application example, use the **show garp status** command.

show garp status

Parameter

None

Default

None

Usage Guidelines

Display the currently running GARP statistics.

Example

The following example shows the currently running GARP statistics:

Switch_config#show garp status

No GARP application is running.

13.2.2.7 1.2.7 Debug garp

Syntax

To enable the garp event or timer debuging information, use the **debug garp event** command. Use the no form of this command to disable debugging.

debug garp { event | timer }

no debug garp { event | timer }

Parameter

Parameter	Parameter description
event	Event debug
timer	Timer debug

Default

None

Usage Guidelines

Use this command to enable/disable debugging GARP event information.

Example

The following example shows how to enable debugging GARP event information

Switch# debug garp event

Switch#

14 STP Configuration Commands

14.1 STP Configuration Commands

14.1.1 STP Configuration Commands

14.1.1.1 spanning-tree

Syntax

spanning-tree

no spanning-tree

To enable the default STP mode, run **spanning-tree**; to disable the STP, run **no spanning-tree**. Enable or disable STP in interface configuration mode.

Parameter

None

Default

Enable RSTP mode by default.

Usage guidelines

None

Command Mode

Global configuration mode Physical port or aggression port configuration mode.

Example

None

14.1.1.2 spanning-tree mode sstp

Syntax

spanning-tree mode sstp

no spanning-tree mode

To switch between RSTP and SSTP modes, use the **spanning-tree mode** command. To return to the default settings, use the no form of this command.

Parameter

None

Default

RSTP

Usage guidelines

None

Command Mode

Global configuration

Example

The following command shows how to enable SSTP mode:

Switch_config# spanning-tree mode sstp

Switch_config#

14.1.1.3 spanning-tree sstp priority

Syntax

To set the sstp bridge priority, use the spanning-tree sstp priority command. To return to the default settings, use the no form of this command.

spanning-tree sstp priority value

no spanning-tree sstp priority

Parameter

Parameter	Description
value	Value is from 0 to 61440.

Default

32768

Usage Guidelines

When setting the priority value, you can make the node as the root of the spanning tree. The configuration value takes 4096 as a step and its value is the multiple of 4096. The configurable values are 0, 4096, 8192, 3*4096, 4*4096, ...and 15*4096.

Command mode

Global configuration

Example

This example shows how to set the SSTP priority to 4096:

Switch(config)# spanning-tree sstp priority 4096

Switch(config)#

14.1.1.4 spanning-tree sstp hello-time

Syntax

To set the hello-time delay timer, use the spanning-tree sstp hello-time command. To return to the default settings, use the no form of this command.

spanning-tree sstp hello-time *time* no spanning-tree sstp hello-time

Parameter

Parameter	Description
time	Number of seconds to set the hello-time delay timer;
	valid values are from 1 to 10 seconds.

Default

2s

Usage Guidelines

The hello-time configured by the local OLT is valid only when the local OLT is the root OLT.

Command mode

Global configuration

Example

The following example sets the SSTP hello-time to 8 seconds:

Switch(config)# spanning-tree sstp hello-time 8

Switch(config)#

14.1.1.5 spanning-tree sstp max-age

Syntax

To set the SSTP max-age timer, use the spanning-tree sstp max-age command. To return to the default settings, use the no form of this command.

spanning-tree sstp max-age time

no spanning-tree sstp max-age

Parameter

Parameter	Description
seconds	Number of seconds to set the max-age timer; valid values are from 6 to 40 seconds.

Default

20s

Usage Guidelines

None

Command mode

Global configuration

Example

This example shows how to set the max-age timer to 24 seconds :

Switch(config)# spanning-tree sstp max-age 24

Switch(config)#

14.1.1.6 spanning-tree sstp forward-time

Syntax

To set the forward-delay timer, use the spanning-tree sstp forward-time command in global configuration mode. To return to the default settings, use the no form of this command.

spanning-tree sstp forward-time time

no spanning-tree sstp forward-time

Parameter

Parameter	Description
time	Number of seconds to set the forward-delay timer;
	valid values are from 4 to 30 seconds.

Default

15 seconds

Usage Guidelines

None

Command mode

Global configuration

Example

The following example shows how to set forward delay timer to 20 seconds:

Switch_config# spanning-tree sstp forward-time 20

Switch_config#

14.1.1.7 spanning-tree sstp cost

Syntax

To set the path cost of the interface for SSTP calculations, use the spanning-tree sstp cost command in interface configuration mode. To return to the default value, use the no form of this command.

spanning-tree sstp cost value

no spanning-tree sstp cost

Parameter

Parameter	Description
value	Path cost. Valid values are from 1 to 20000000

Default

10M Ethernet:100 . 100M Ethernet: 19 . 1000M Ethernet: 4 .

Usage Guidelines

None

Command mode

Interface configuration

Example

This example shows how to set a path cost value of 100 for the spanning tree VLAN associated with the interface G0/1:

Switch_config_g0/1#spanning-tree sstp cost 100

Switch_config_g0/1#

14.1.1.8 spanning-tree cost

Syntax

To set the path cost of the interface for Spanning Tree Protocol (STP) calculations, use the spanning-tree cost command in interface configuration mode. To return to the default value, use the no form of this command.

spanning-tree cost value no spanning-tree cost

Parameter

Parameter	Description
value	Path cost; valid values are from 1 to 200000000

Default

The default path cost is computed from the bandwidth setting of the interface.

Usage Guidelines

The configuration result of this command is valid to all spanning-tree modes. In STP mode, the path cost of all VLAN spanning-trees on the interface will be updated. In MSTP mode, the path cost of all spanning-tree examples will be updated.

But the configuration result of the command will not influence the independent configuration in various modes. For example, the OLT respectively configured with the spanning-tree sstp cost 100 and the spanning-tree cost 110 in SSTP mode, the port priority will be 100.

Command mode

Interface configuration

Example

This example shows how to set a path cost value of 24 for the spanning tree VLAN associated with the interface g0/1:

Switch(config_f0/0)# spanning-tree cost 24

Switch_config_g0/1#

14.1.1.9 spanning-tree sstp port-priority

Syntax

To set the priority value in SSTP mode, use the spanning-tree sstp port-priority command. Use the no form of this command to restore the default value.

spanning-tree sstp port-priority value

no spanning-tree sstp port-priority

parameter

Parameter	Description
value	Port priority. Value is from 0 to 240.

Default

```
128 (0x80)
```

Usage Guidelines

The port priority must be set in increments of 16 only.

Command mode

Interface configuration

Example

The following example sets 32 as the priority value on interface g0/1:

Switch_config_g0/1# spanning-tree sstp port-priority 32

Switch_config_g0/1#

14.1.1.10 spanning-tree port-priority

Description

To prioritize an interface when two bridges compete for position as the root bridge, use the spanning-tree port-priority command. The priority you set breaks the tie. To return to the default value, use the no form of this command.

spanning-tree port-priority value no spanning-tree port-priority

Parameter

Parameter	Description
value	Port priority. Value is from 0 to 240. Step: 16

default

Port priority value is 128

Usage Guidelines

The configuration result of this command is valid to all spanning-tree modes. In STP mode, the priority of all VLAN spanning-trees on the interface will be updated. In MSTP mode, the priority of all spanning-tree examples will be updated.

But the configuration result of the command will not influence the independent configuration in various modes. For example, the OLT respectively configured with the spanning-tree sstp port-priority 128 and the spanning-tree port-priority 48 in SSTP mode, the port priority will be 128.

Command mode

Interface configuration

example

The following example shows how to set the priority value to g0/1:

Switch_config_g0/1#spanning-tree port-priority 16

Switch_config_g0/1#

14.1.1.11 show spanning-tree

Syntax

To display spanning-tree information for the specified spanning-tree instances, use the show spanning-tree command.

show spanning-tree [detail | interface intf-i]

Parameter

Parameter	Description
intf-i	Interface name, for instance, G0/1.

Default

None

Usage Guidelines

Show spanning-tree state.

Command mode

EXEC/Global configuration/Interface configuration

Example

Switch_config#show spanning-tree

Spanning tree enabled protocol SSTP

SSTP

Root ID	Priority	32768		
	Address	00E	0.0FCC.F775	
	This bridg	e is the	root	
	Hello Tim	e 2 sec	Max Age 20 sec	Forward Delay 15 sec

Bridge ID Priority 32768

Address	00E0.0FCC.F775

Hello Time 2 sec	Max Age 20 sec	Forward Delay 15 sec
------------------	----------------	----------------------

Interface	Role Sts Cost	Pri.Nbr Type
G0/1	Desg FWD 19	128.16 P2p

Switch_config#

14.1.1.12 spanning-tree management trap

Syntax

To enable STP Trap, run command **spanning-tree management trap** [**newroot** | **topologychange**]. To return to the default value, use the no form of this command.

[no] spanning-tree management trap [newroot | topologychange]

Parameter

Parameter	Description
newroot	newRoot Trap type
topologychange	topologyChange Trap type

Default

STP Trap is not enabled.

Usage guidelines

None

Command mode

Global configuration

Example

None

14.1.2 VLAN STP Configuration Commands

14.1.2.1 spanning-tree mode pvst

Syntax

spanning-tree mode pvst

no spanning-tree mode

To enable STP modes, use the **spanning-tree mode pvst** command. To disable all STP modes, use the no form of this command.

Parameter

None

RSTP mode

Usage guidelines

None

Example

The following command shows how to enable PVST in switch.

Switch_config# spanning-tree mode pvst

Switch_config#

14.1.2.2 spanning-tree vlan

Syntax

spanning-tree vlan vlan-list

no spanning-tree vlan vlan-list

To configure a STP instance for a specified VLAN, use **spanning-tree vlan** *vlan-list* command. To remove the specified spanning-tree vlan, use no form of the command.

Parameter

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.

Default

Switch can configure spanning-tree for a certain number of VLAN. In default mode, the exceeded VLAN will be prohibited.

Usage guidelines

None

Command Mode

Global configuration mode

Example

The following command shows how to remove the spanning-tree of VLAN10, 11, 15-19, and configure the spanning-tree for VLAN 40-50:

```
Switch_config#no spanning-tree vlan 10,11,15-19
```

Switch_config#spanning-tree vlan 40-50

Switch_config#

14.1.2.3 spanning-tree vlan priority

Syntax

spanning-tree vlan vlan-list priority value

no spanning-tree vlan vlan-list priority

Use the command to configure the bridge priority value for the spanning-tree in specified VLAN.

Parameter

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.
value	Priority values, ranging from 0 to 61440, step: 4096

Default

In default mode, the bridge priority value of the spanning-tree VLAN is 32768 plus VLAN number.

Usage guidelines

None

Command Mode

Global configuration mode

Example

The following command shows how to configure the bridge priority value of VLAN1-3, 5-10 to 4096:

Switch_config#spanning-tree vlan 1-3,5-10 priority 4096

Switch_config#

14.1.2.4 spanning-tree vlan forward-time

Syntax

spanning-tree vlan vlan-list forward-time value

no spanning-tree vlan vlan-list forward-time

To set the Forward DelayParameter of the specified spanning-tree vlan, use **spanning-tree vlan** *vlan-list* **forward-time** *value* command. To return to the default settings, use the no form of this command.

Parameter

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.
value	Forward-Delay value, ranging from 4s to 30s. The default value is 15s.

Default

All VLAN Forward Delay is 15s.

Usage guidelines

None

Command Mode

Global configuration mode

Example

The following command shows how to configure the Forward Delay of VLAN1-3, 5-10 to 19s:

Switch_config#spanning-tree vlan 1-3,5-10 forward-time 19

Switch_config#

14.1.2.5 spanning-tree vlan max-age

Syntax

spanning-tree vlan vlan-list max-age value

no spanning-tree vlan vlan-list max-age

To set the Max AgeParameter of the specified spanning-tree vlan, use **spanning-tree vlan** *vlan-list* **max-age** *value* command. To return to the default settings, use the no form of this command.

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.
value	max-age value, ranging from 6s to 40s. Its default value is 20s.

All VLAN Max Age is 20s.

Usage guidelines

None

Command Mode

Global configuration mode

Example

The following command shows how to configure the Max Age of VLAN1-3, 5-10 to 19s:

Switch_config#spanning-tree vlan 1-3,5-10 max-age 19

Switch_config#

14.1.2.6 spanning-tree vlan hello-time

Syntax

spanning-tree vlan vlan-list hello-time value

no spanning-tree vlan vlan-list hello-time

To set the hello-timeParameter of the specified spanning-tree vlan, use **spanning-tree vlan** *vlan-list* **hello-time** *value* command. To return to the default settings, use the no form of this command.

Parameter

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.
value	hello-time value, ranging from 1s to 10s. Its default value is 2s.

Default

All VLAN Hello-Time is 2s.

Usage guidelines

None

Command Mode

Global configuration mode

Example

The following command shows how to configure the Hello Time of VLAN1-3, 5-10 to 9s:

Switch_config#spanning-tree vlan 1-3,5-10 hello-time 9

Switch_config#

14.1.2.7 spanning-tree vlan cost

Syntax

spanning-tree vlan vlan-list cost value

no spanning-tree vlan vlan-list cost

To set the path cost of the interface for Spanning Tree Protocol (STP), use the **spanning-tree vlan** *vlan-list* **cost** *value* command. To return to the default value, use the no form of this command.

Parameter

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.
value	The path cost of the interface rangings from 1 to 200000000.

Default

The path cost depends on the connection rate of the port. The path cost value of 10M Ethernet is 100. The path cost value of 100M Ethernet is 19. The path cost value of 1000M Ethernet is 1.

Usage guidelines

None

Command Mode

Interface configuration mode

Example

The following command shows how to configure the path cost of VLAN1-3, 5-10 in the interface G0/1 to 100: Switch_config_g0/1#spanning-tree vlan 1-3,5-10 cost 100 Switch_config_g0/1#

14.1.2.8 spanning-tree vlan port-priority

Syntax

spanning-tree vlan vlan-list port-priority value

no spanning-tree vlan vlan-list port-priority

To set the interface priority for Spanning Tree Protocol (STP), use the **spanning-tree vlan** *vlan-list* **port-priority** *value* command. To return to the default value, use the no form of this command.

Parameter

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.
value	Interface priority, ranging from 0 to 240, step: 16.

Default

128

Usage guidelines

None

Command Mode

Interface configuration mode

Example

The following command shows how to configure the priority of VLAN1-3, 5-10 in the interface G0/1 to 32:

Switch_config_g0/1#spanning-tree vlan 1-3,5-10 port-priority 32

Switch_config_g0/1#

14.1.2.9 show spanning-tree vlan

Syntax

show spanning-tree vlan *vlan-list* [**detail**] Use the command to check the spanning-tree status of the specified VLAN.

Parameter	Description
vlan-list	VLAN number list, such as: 1,2,3-10,15.

detail

Displays the detailed information.

Default

None

Usage guidelines

None

Command Mode

EXEC, global configuration mode or interface configuration mode

Example

The following examples to check the spanning-tree of vlan 1-2:

Switch_config#show spanning-tree vlan 1-2

Spanning tree enabled protocol PVST

VLAN0001

Bridge ID Priority

Root ID	Priority	32769		
	Address	008	0.0FCC.F775	
	This bridg	e is the	root	
	Hello Tim	e 2 sec	Max Age 20 sec	Forward Delay 15 sec

Address 00E0.0FCC.F775 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface Role Sts Cost Pri.Nbr Type

32769

G0/1 Desg FWD 19 128.1 P2p

VLAN0002

Root ID Priority 32770

Address 00E0.0FCC.F775

	This bridge is the root			
	Hello Time 2	2 sec N	1ax Age 20 se	c Forward Delay 15 sec
Bridge ID	Priority 3	2770		
	Address	00E0.0	0FCC.F775	
	Hello Time 2	2 sec N	1ax Age 20 se	c Forward Delay 15 sec
Interface	Role Sts (Cost	Pri.Nbr Ty	be
G0/1	Desg FV	/D 19	128.1	P2p
Switch_config	;#			

14.1.2.10 show spanning-tree pvst instance-list

Syntax

show spanning-tree pvst instance-list

Use the command to check how the PVST instance corresponds to the VLAN.

Parameter

None

Default

None

Usage guidelines

None

Command Mode

EXEC, global configuration mode or interface configuration mode

Example

None

14.2 RSTP Configuration Commands

14.2.1 RSTP Configuration Commands

14.2.1.1 spanning-tree mode rstp

Syntax

spanning-tree mode rstp
no spanning-tree mode
To enable the RSTP function, run spanning-tree mode rstp. To disable the RSTP, run no spanning-tree mode.

Parameter

None

Default

RSTP is enabled.

Usage Guidelines

None

Example

The following command shows how to enable rstp on switch.

Switch_config# spanning-tree mode rstp

Switch_config#

14.2.1.2 spanning-tree rstp forward-time

Syntax

spanning-tree rstp forward-time time

no spanning-tree rstp forward-time

To configure the forwarding delay of RSTP, run **spanning-tree rstp forward-time**. To resume the default forwarding delay of RSTP, run **no spanning-tree rstp forward-time**.

Parameter	Description
time	Time of the forwarding delay whose value ranges between
	4 and 30 seconds.

15s

Usage Guidelines

None

Example

The following example shows how to set the forwarding delay of RSTP to 20 seconds.

Switch_config# spanning-tree rstp forward-time 20

Switch_config#

14.2.1.3 spanning-tree rstp hello-time

Syntax

spanning-tree rstp hello-time time

no spanning-tree rstp hello-time

To configure the update interval of RSTP, run **spanning-tree rstp hello-time** *time*. To resume the default update interval of RSTP, run **no spanning-tree rstp hello-time**.

Parameter

Parameter	Description
time	Update interval. The value ranges: 1-10s.

Default

2s

Usage Guidelines

The Hello-Time configured on the local switch validates only when the local switch runs as a root switch.

Example

The following example shows how to set the update interval of RSTP to 8 seconds.

Switch_config# spanning-tree rstp hello-time 8

Switch_config#

14.2.1.4 spanning-tree rstp max-age

Syntax

spanning-tree rstp max-age time

no spanning-tree rstp max-age

To configure the maximum lifespan of the RSTP BPDU, run **spanning-tree rstp max-age time**. To resume the default interval time, run **no spanning-tree rstp max-age**.

Parameter

Parameter	Description
time	Maximum interval of the lifespan. Value ranges: 6-40s.

Default

20s

Usage Guidelines

None

Example

The following example shows how to set the maximum lifespan of RSTP to 24 seconds.

Switch_config# spanning-tree rstp max-age 24

Switch_config#

14.2.1.5 spanning-tree rstp priority

Syntax

spanning-tree rstp priority value

no spanning-tree rstp priority

To configure the RSTP priority value, run **spanning-tree rstp priority** *value*. To resume the default value of the RSTP priority value, run **no spanning-tree rstp priority**.

Parameter	Description
value	Priority level of the bridge. The value ranges: 0-61440, step 4096.

32768

Usage Guidelines

None

Example

The following example shows how to configure the priority level of the brigde of rstp to 4096.

Switch_config# spanning-tree rstp priority 4096

Switch_config#

14.2.1.6 spanning-tree rstp cost

Syntax

To configure the path cost of a port, run **spanning-tree rstp cost value**. To resume the default value, run **no spanning-tree rstp cost**.

spanning-tree rstp cost value

no spanning-tree rstp cost

Parameter

Parameter	Description
value	Value of the path cost. The value ranges: 1-200000000.

Default

The path cost depends on the connection rate of the port. 10 Mbps: 2000000 100 Mbps: 200000 1000 Mbps: 20000

Usage Guidelines

None

Example

The following example shows how to set the path cost of port g0/1 to 24:

Switch_config_g0/1# spanning-tree rstp cost 24

Switch_config_g0/1#

14.2.1.7 spanning-tree rstp port-priority

Syntax

To configure the priority level of a port, run **spanning-tree rstp port-priority** *value*. To resume the default value, run **no spanning-tree rstp port-priority**.

spanning-tree rstp port-priority value

no spanning-tree rstp port-priority

Parameter

Parameter	Description
value	Priority level of a port. The value ranges: 0-240, step 16.

Default

128

Usage Guidelines

None

Example

The following example shows how to set the path cost of port g0/1 to 16:

Switch_config_g0/1# spanning-tree rstp port-priority 16

Switch_config_g0/1#

14.2.1.8 spanning-tree rstp edge

Syntax

To configure the edge port, run **spanning-tree rstp edge**. To return to the default setting, run **no spanning-tree rstp edge**.

spanning-tree rstp edge no spanning-tree rstp edge

Parameter

None

Default

Automatic check

Usage Guidelines

None

Command Mode

Interface configuration

Example

None

14.2.1.9 spanning-tree rstp point-to-point

Syntax

To set the point-to-point connection of a port to force-truce, force-false or auto, run this command. **spanning-tree rstp point-to-point [force-true | force-false | auto]**

Parameter

Parameter	Description
force-true	To set the point-to-point connection of a port to force-truce.
force-false	To set the point-to-point connection of a port to force-false.
auto	Sets the point-to-point connection to be automatic check (default).

Default

Automatic check

Usage Guidelines

None

Command Mode

Interface Configuration

Example

None

14.2.1.10 spanning-tree rstp migration-check

Syntax

To restart checking protocol transfer of RSTP, run **spanning-tree rstp migration-check**. **spanning-tree rstp migration-check**

Parameter

None

Default

None

Usage Guidelines

This command is used to restart the protocol transfer check on a port and to change the port in STP-compatible mode to the RSTP mode, enabling RSTP BPDU to be transmitted.

Command Mode

Global and interface configuration

Example

The following example shows how to run protocol transfer check on interface G0/1:

Switch_config_g0/1#spanning-tree rstp migration-check

Switch_config_g0/1#

14.3 MSTP Configuration Commands

14.3.1 MSTP Configuration Command

14.3.1.1 spanning-tree mode mstp

Syntax

To set the running mode of STP to **MSTP**, run **spanning-tree mode mstp**. To disable STP, Run **no spanning-tree mode**.

spanning-tree mode mstp no spanning-tree mode

Parameter

None

The MSTP mode is disabled, while the RSTP mode is running.

Usage Guidelines

None

Example

The following example shows how to enable MSTP protocol on the switch:

switch(config)# spanning-tree mode mstp

switch(config)#

14.3.1.2 spanning-tree mstp name

Syntax

spanning-tree mstp name string

no spanning-tree mstp name

To configure the regional name of the STP, run **spanning-tree mstp name** *string*. To resume the default name, run **no spanning-tree mstp**.

Parameter

Parameter	Description
String	Configures the character string of the name. The character string can have up to 32 characters, capital sensitive. The default value is in the form of character string like the MAC address of the switch.

Default

Character string form of the switch's MAC address

Usage Guidelines

None

Example

The following example shows how to set the configuration name of the switch's STP to reg-01.

switch(config)# spanning-tree mstp name reg-01

switch(config)#

14.3.1.3 spanning-tree mstp revision

Syntax

To generate the revision number of STP, run **spanning-tree mstp revision** *value*. To return to the default value, run **no spanning-tree mstp revision**.

spanning-tree mstp revision value

no spanning-tree mstp revision

Parameter

Parameter	Description
Value	Revision number: 0 ~65535. Its default value is 0.

Default

The default value of the revision number is **0**.

Usage Guidelines

None

Example

The following commands are used to set the regional revision number of STP to **100**.

switch(config)# spanning-tree mstp revision 100

switch(config)#

14.3.1.4 spanning-tree mstp instance

Syntax

To map the VLAN to the MSTI, run **spanning-tree mstp instance** *instance-id* **vlan** *vlan-list*. To re-map the VLAN to the CIST, run **no spanning-tree mstp instance** *instance-id*. **spanning-tree mstp instance** *instance-id* **vlan** *vlan-list* **no spanning-tree mstp instance** *instance-id*

Parameter	Description
instance-id	Instance number of the STP, meaning an MSTI which ranges from 1 to 15.
vlan-list	VLAN list which is mapped to the STP, ranging from 1 to 4094.

All VLANs are mapped to the CIST (MST00).

Usage Guidelines

instance-id is an unique value representing an STP instance. **vlan-list** represents a VLAN group, such as "1,2,3", "1-5" and "1,2,5-10".

Example

The following commands map VLAN1 to instance 1 of STP, and VLAN5,7,10-20 to instance 2 of STP, and then re-map these VLANs to MST00.

Switch_config# spanning-tree mstp instance 1 vlan 2

Switch_config# spanning-tree mstp instance 2 vlan 5,7,10-20

Switch_config# no spanning-tree mstp instance 1

Switch_config# no spanning-tree mstp instance 2

14.3.1.5 spanning-tree mstp root

Syntax

spanning-tree mstp instance-id root {primary | secondary}

[diameter net-diameter [hello-time seconds]]

no spanning-tree mstp instance-id root

To configure the specified MSTP instance to the primary/secondary root, run **spanning-tree mstp** *instance-id* **root** {**primary** | **secondary**}. To return to the default setting, run the negative form of the above command.

Both the **diameter** command and the **hello-time** command can modify the network diameter and the **HelloTime** parameter of the MSTP when they are setting the root.

Parameter	Description
instance-id	MSTP instance, ranging from 0 to 15
primary	Sets the MSTP instance to the primary root.
secondary	Sets the MSTP instance to the secondary root.
net-diameter	Network diameter, which is optional
	When the instance-id parameter is 0, it is effective.
	It ranges from 2 to 7.
seconds	Hello time, an optional parameter, which ranges from 1
	to 10 seconds

The priority value of all default roots of all MSTP instances are 32768, the network diameter is 7 and the HelloTime is 2 seconds.

Usage Guidelines

Both the **diameter** command and the **hello-time** command are valid only when **instanc-id** is **0**. Generally, after you run the command to set the primary root, the protocol automatically checks the ID of the current network root and then sets the priority field of the root identifier to 24576 if this value gurantees the current OLT to be the root of the MSTP instance. If the priority value of the root is smaller than 24576, the protocol will automatically set the MSTP priority of the current root to a value which is 4096 smaller than the root's priority. Here, 4069 is the step of the root priority.

Different from the configuration of the primary root, the protocol directly sets the MSTP priority of the OLT to **28672** after the command for configuring the secondary root is run. Thus, the current OLT can be the secondary root when the priorities of other OLTs are the default value **32768**.

Example

The following commands are used to set the OLT to the primary root in the CIST and recalculate the time parameter of the MSTP through network diameter 3 and HelloTime3, and at last set the OLT to the secondary root in the MST01.

Switch_config# spanning-tree mstp 0 root primary diameter 3 hello-time 3

Switch_config# spanning-tree mstp 1 root secondary

14.3.1.6 spanning-tree mstp priority

Syntax

To configure the bridge priority of the MSTP instance, run **spanning-tree mstp** *instance-id* **priority** *value*. To return to the default setting, run **no spanning-tree mstp** *instance-id* **priority**.

spanning-tree mstp instance-id priority value

no spanning-tree mstp instance-id priority

Parameter	Description
instance-id	MSTP instance number, ranging from 0 to 15
value	Bridge priority, which can be one of the given values:
	0, 4096, 8192, 12288, 16384, 20480, 24576, 28672,
	32768, 36864, 40960, 45056, 49152, 53248, 57344,
	61440.

The default priority of the bridges of all MSTP instances is 32768.

Usage Guidelines

Each priority value in the MSTP instance is independent and can be configured independently.

Example

The following commands are used to set the priority of the switch in the CIST and MST01 to 4096 and 8192 respectively.

Switch_config# spanning-tree mstp 0 priority 4096

Switch_config# spanning-tree mstp 1 priority 8192

14.3.1.7 spanning-tree mstp hello-time

Syntax

spanning-tree mstp hello-time seconds

no spanning-tree mstp hello-time

It is used to configure the hello-time of the MSTP, and its negative form is used to resume the default settings of the HelloTime.

Parameter

Parameter	Description
seconds	It ranges from 1 to 10 seconds. Its default value is 2
	seconds.

Default

2 seconds

Usage Guidelines

None

Example

The following commands are used to set the HelloTime of the MSTP to 10.

switch(config)# spanning-tree mstp hello-time 10

switch(config)# no spanning-tree mstp hello-time

14.3.1.8 spanning-tree mstp forward-time

Syntax

spanning-tree mstp forward-time seconds

no spanning-tree mstp forward-time

It is used to configure the Forward Delay of the MTSP. Its negative is used to resume the default settings.

Parameter

Parameter	Description
seconds	It ranges from 4 to 30 seconds. Its default value is 15
	seconds.

Default

15 seconds

Usage Guidelines

None

Example

The following commands are used to set the Forward Delay parameter of the MTSP to 10.

Switch_config# spanning-tree mstp forward-time 10

Switch_config# no spanning-tree mstp forward-time

14.3.1.9 spanning-tree mstp max-age

Syntax

To configure the Max Age parameter of the MSTP, run **spanning-tree mstp max-age** *seconds*. To return to the default setting, run the negative form of the command.

spanning-tree mstp max-age seconds

no spanning-tree mstp max-age

Parameter	Description
Seconds	Range: 6-40 seconds
	The default value is 20 seconds.

20 seconds

Usage Guidelines

None

Example

The following commands are used to set the MaxAge parameter of the MSTP to 10.

Switch_config# spanning-tree mstp max-age 10

Switch_config# no spanning-tree mstp max-age

14.3.1.10 spanning-tree mstp diameter

Syntax

To configure the network diameter of the MSTP, run **spanning-tree mstp diameter** *net-diameter*. To return to the default setting, run **no spanning-tree mstp diameter**.

spanning-tree mstp diameter net-diameter

no spanning-tree mstp diameter

Parameter	Description
net-diameter	Range: 2 - 7
	Its default value is 7.

Default

The default network diameter is 7.

Usage Guidelines

The **net-diameter** parameter is not saved as an independent settings in the OLT. The time parameter that is modified through network diameter configuration can be saved. The **net-diameter** parameter is valid in the CIST. After settings, the three time parameters of the STP can be automatically updated to a relatively advantageous value.

It is recommended to set the time parameters of the STP through root configuration or network diameter configuration. In this way, the reasonability of the time parameters can be assured.

Example

The following first command is to set the bridge diameter of MSTP to 5. The second command is to resume the default value of the bridge diameter.

Switch_config# spanning-tree mstp diameter 5

Switch_config# no spanning-tree mstp diameter

14.3.1.11 spanning-tree mstp max-hops

Syntax

spanning-tree mstp max-hops hop-count

no spanning-tree mstp max-hops

The **spanning-tree mstp max-hops** *hop-count* command is used to set the maximum number of hops of the MSTP BPDU. Its negative is used to resume the default settings.

Parameter

Parameter	Description
hop-count	Ranges from: 6 -40
	Its default value is 20.

Default

The default vaue of the maximum hop counts is 20.

Usage Guidelines

None

Example

The first command is to set the maximum hop counts of the MSTP BPDU to 6. The second command is to restore the default value of the maximum hop counts.

Switch_config# spanning-tree mstp max-hops 6

Switch_config# no spanning-tree mstp max-hops

14.3.1.12 spanning-tree mstp port-priority

Syntax

To designate the priority of the spanning-tree STP instance, run **spanning-tree mstp** *instance-id* **port-priority** *value*. To return to the default setting, run the no form of the command.

spanning-tree mstp instance-id port-priority value

no spanning-tree instance-id port-priority

Parameter	Description
instance-id	Number of the STP instance, ranging from 0 to 31.
Value	Port priority, which is one of the following values:

0, 16, 32, 48, 64, 80, 96, 112
128, 144, 160, 176, 192, 208, 224, 240

Default

The default priority value of the port in all STP instances is 128.

Usage Guidelines

None

Example

The first command is to set the priority of port G0/1 in the CIST to 16. The second command is to resume the default value.

Switch_config_g0/1# spanning-tree mstp 0 port-priority 16

Switch_config_g0/1# no spanning-tree mstp 0 port-priority

14.3.1.13 spanning-tree mstp cost

Syntax

The command **spanning-tree mstp** *instance-id* **cost value** is used to set the path cost of the port in the specified STP instance. Its negative is used to resume the default settings.

spanning-tree mstp instance-id cost value

no spanning-tree mstp instance-id cost

Parameter

Parameter	Description	
instance-id	Number of the STP instance, ranging from 0 to 15.	
value	Path cost of the port, ranging from 1 to 200000000	

Default

It depends on the connection rate of the port: 10 Mbps: 200000 100 Mbps: 200000 1000 Mbps: 20000

Usage Guidelines

None

Example

The following commands are used to set the path cost of port G0/1 in the CIST to 200.

Switch_config_g0/1# spanning-tree mstp 0 cost 200

Switch_config_g5/1#

14.3.1.14 spanning-tree mstp edge

Syntax

spanning-tree mstp edge

no spanning-tree mstp edge

To configure the edge port, run **spanning-tree mstp edge**. To return to the default setting, run **no spanning-tree mstp edge**.

Parameter

None

Default

Automatic check edge port

Usage Guidelines

None

Example

None

14.3.1.15 spanning-tree mstp point-to-point

Syntax

spanning-tree mstp point-to-point { force-true | force-false | auto }

no spanning-tree mstp point-to-point

To configure the connection type of a port, run **spanning-tree mstp point-to-point { force-true | force-false | auto }**. To resume the connection type to auto-check, run **no spanning-tree mstp point-to-point**.

Parameter

Parameter	Description		
force-true	Sets the port connection mode to point-to-point.		
force-false	Sets the port connection mode to sharing.		

auto	Sets	the	port	connection	mode	to	auto-chech	(the
	defa	ult m	ode).					

Default

MSTP will automatically check the port connection mode by default.

Usage Guidelines

None

Example

The following example shows how to set the connection mode of port G0/1 to sharing.

Switch_config_g0/1# spanning-tree mstp point-to-point force-false

Switch_config_g0/1#

14.3.1.16 spanning-tree mstp mst-compatible

Syntax

spanning-tree mstp mst-compatible

no spanning-tree mstp mst-compatible

Enable/disable the MST-compatible mode, the global configuration mode.

spanning-tree mstp mst-compatible {enable | disable}

no spanning-tree mstp mst-compatible

Enable/disable the MST-compatible mode, the interface configuration mode.

Parameter

Parameter	Description	
enable	Enable the MST-compatible mode	
disable	Disable the MST-compatible mode	

Default

The compitable mode is not activated by default and OLT cannot establish an area with other switches which transmit BPDU in compatible mode.

Usage Guidelines

After the MST-compatible mode is enabled, configure other connected switches that are running other MSTP protocols to the roots of CIST, ensuring that the OLT can enter the MSTP-compatible mode by receiving the message.

Example

The following command is to activate the MST-compatible mode in global configuration mode:

switch(config)#spanning-tree mstp mst-compatible

14.3.1.17 spanning-tree mstp migration-check

Syntax

spanning-tree mstp migration-check

Clear the STP information that is checked by the port, and restart the protocol conversion process.

Parameter

None

Default

None

Usage Guidelines

The command is valid in global configuration mode and in port configuration mode.

Example

The following commands are used to check the protocol conversion on all ports first, and then check the protocol conversion on port G0/1 again.

Switch_config# spanning-tree mstp migration-check

Switch_config# interface g0/1

Switch_config_g0/1# spanning-tree mstp migration-check

14.3.1.18 spanning-tree mstp restricted-role

Syntax

[no] spanning-tree mstp restricted-role Enable/disable the role restriction on the port.

Parameter

None

Default

Disable the port's role restriction.

Command Mode

Interface Configuration

Usage Guidelines

Enable the role restriction and the port will not be chosen as the root port.

Example

None

14.3.1.19 spanning-tree mstp restricted-tcn

Syntax

[no] spanning-tree mstp restricted-tcn

Enable/disable the TCN restriction on the port.

Parameter

None

Default

Disable the TCN restriction on the port.

Command Mode

Interface Configuration

Usage Guidelines

Enable the TCN restriction on the port and do not tranmit topology changes to other ports.

Example

None

14.3.1.20 show spanning-tree mstp

Syntax

show spanning-tree mstp [instance instance-id]

The command above is used to check the MSTP information. If you run the command **show spanning-tree mstp**, the information about all STP instances is displayed.

Parameter

Parameter	Description
instance-id	Number of the STP instance, ranging from 0 to 15

Default

None

Usage Guidelines

It is valid in monitoring mode, global configuration mode or port mode.

Example

The following shows how to view all STP instances through the command. Here, **MST00** stands for CIST, and the **Type** field stands for the port connection type.

Switch#show spanning-tree mstp

MST00	Vlans Mapped: 1,4-4094				
Bridge	Address 00E0.0F64.8365 Priority 32768 (32768 mst-id 0)				
Root	This bridge is the CIST and regional root				
Configured	Hello Time 2, Forward Delay 15, Max Age 20, Max Hops 20				
Root Times	Hello Time 2, Forward Delay 15, Max Age 20				

Interface	Role Sts Cost Pri.Nbr Type
G0/1	Desg FWD 200000 128.1 P2p
G0/2	Desg FWD 200000 128.2 Edge
MST01	Vlans Mapped: 2
Bridge	Address 00E0.0F64.8365 Priority 32769 (32768 mst-id 1)
Root	This bridge for MST01
Interface	Role Sts Cost Pri.Nbr Type

```
G0/1 Desg FWD 200000 128.1 P2p
```

MST02 Vlans Mapped: 3

Bridge Address 00E0.0F64.8365 Priority 32770 (32768 mst-id 2)

Root This bridge for MST02

Interface Role Sts Cost Pri.Nbr Type

G0/1 Desg FWD 200000 128.1 P2p

14.3.1.21 show spanning-tree mstp region

Syntax

show spanning-tree mstp region

Check the regional configuration information about the MSTP.

Parameter

None

Default

None

Usage Guidelines

None

Example

See the following information. MST Config Table shows the relation between VLAN and STP instance.

switch(config)# show spanning-tree mstp region

MST Region:

Name: [reg01]

Revision:[0]

MST Config Table:

Instance VLAN IDs

- 0 1,4-4094
- 1 2
- 2 3

14.3.1.22 show spanning-tree mstp detail

Syntax

show spanning-tree mstp detail

The command above is used to check the detailed information about MSTP.

Parameter

None

Default

None

Usage Guidelines

None

Example

The following example shows the detailed STP information after the command is run, including the port connection type and optional characteristics:

Switch#show spanning-tree mstp detail

MST00	Vlans	Mapped: 1,4-40	94	
Root	Address	00E0.0F64.8365	Priority	32768 (32768 mst-id 0)

Root This root is the CIST and regional root

Configured Hello Time 2, Forward Delay 15, Max Age 20, Max Hops 20

Root Times Hello Time 2, Forward Delay 15, Max Age 20

FastEthernet0/1 of MST00 is designated forwarding

Port Info	Port ID 128.1	Priority 128	Cost 200000
Designated Root	Address 00E0.0F64.8365	Priority 32768	3 Cost 0
CIST Regional Root	Address 00E0.0F64.8365	Priority 32768	Cost 0
Designated Root	Address 00E0.0F64.8365	Priority 32768	Port ID 128.1

KYLAND

Edge Port:disabledLink Type:point-to-point (auto)Bpdu Guard:disabled (default)Root Guard:disabled (default)Loop Guard:disabled (default)Timers:message expires in 0 sec, forward delay 0 sec, up time 662 secNumber of transitions to forwarding state:1

Bpdu sent 335, received 5

FastEthernet0/3 of MST00 is backup blocking

Port Info	Port ID 128.3	Priority 128	Cost 200000	
Designated Root	Address 00E0.0F64.836	5 Priority 3276	8 Cost 0	
CIST Regional Root	Address 00E0.0F64.8365	Priority 32768	Cost 0	
Designated Root	Address 00E0.0F64.8365	Priority 32768	Port ID 128.1	
Edge Port: disabled Link Type: point-to-point (auto)				
Bpdu Guard: disabled (default) Root Guard: disabled (default)				
Loop Guard: disabled (default)				
Timers: message expires in 5 sec, forward delay 15 sec, up time 662 sec				
Number of transitions to forwarding state: 0				
Bpdu sent 5, received 335				

FastEthernet0/47 of MST00 is designated forwarding

Port Info	Port ID 128.47	Priority 128	Cost 200000	
Designated Root	Address 00E0.0F64.8365	5 Priority 3276	8 Cost 0	
CIST Regional Root	Address 00E0.0F64.8365	Priority 32768	Cost 0	
Designated Root	Address 00E0.0F64.8365	Priority 32768	Port ID 128.47	
Edge Port: enabled	l (auto) Link Ty	pe: point-to-po	oint (auto)	
Bpdu Guard: disabled (default) Root Guard: disabled (default)				
Loop Guard: disabled (default)				
Timers: message expires in 0 sec, forward delay 0 sec, up time 1485 sec				
Number of transitions to forwarding state: 1				
Bpdu sent 744, received 0				

MST01 Vlans Mapped: 2

KYLAND

Root Address 00E0.0F64.8365 Priority 32769 (32768 mst-id 1)

Root This root for MST01

FastEthernet0/1 of MST01 is designated forwarding

Port InfoPort ID 128.1Priority 128Cost 200000Designated RootAddress 00E0.0F64.8365Priority 32769Cost 0Desingated RootAddress 00E0.0F64.8365Priority 32769Port ID 128.1Timers:message expires in 0 sec, forward delay 0 sec, up time 662 secNumber of transitions to forwarding state: 1

MST Config Message transmitted 335, received 0

MST02 Vlans Mapped: 3

Root Address 00E0.0F64.8365 Priority 32770 (32768 mst-id 2)

Root This root for MST02

FastEthernet0/1 of MST02 is designated forwarding

Port Info	Port ID 128.1	Priority 128	Cost 200000
Designated Root	Address 00E0.0F64.8365	Priority 32770	0 Cost 0
Desingated Root	Address 00E0.0F64.8365	Priority 32770	Port ID 128.1
Timers: message exp	ires in 0 sec, forward delay	0 sec, up time 6	62 sec
Number of transitions to forwarding state: 1			
MST Config Message t	ransmitted 335, received 0		

14.3.1.23 show spanning-tree mstp interface

Syntax

show spanning-tree mstp interface *interface-id*

The command above is used to check the information about the port which is run under MSTP.

Parameter

Parameter	Description
interface-id	Port name, such as "G0/1", "GigaEthernet0/2"

Default

None

Usage Guidelines

None

Example

The following example shows the information about port G0/1 after you run the command Switch#show spanning-tree mstp interface

g0/1

GigaEthernet0/1 of MST00 is designated forwarding

Port Info	Port ID 128.1	Priority 128	Cost 200000
Designated Root	Address 00E0.0F64.8365	Priority 32768	Cost 0
CIST Regional Root	Address 00E0.0F64.8365	Priority 32768	Cost 0
Designated Bridge	Address 00E0.0F64.8365	Priority 32768	Port ID 128.1
Edge Port: disabled	Link Ty	pe: point-to-pc	oint (auto)
Bpdu Guard: disable	d (default) Root Gua	ard: disabled (def	ault)
Loop Guard: disabled (default)			
Timers: message expires in 0 sec, forward delay 0 sec, up time 851 sec			
Number of transitions to forwarding state: 1			
Bpdu sent 430, received 5			

GigaEthernet0/1 of MST01 is designated forwarding

Port Info	Port ID 128.1	Priority 128	Cost 200000
Designated Root	Address 00E0.0F64.8365	Priority 32769	Cost 0
Desingated Bridge	Address 00E0.0F64.8365	Priority 32769	Port ID 128.1
Timers: message expi	res in 0 sec, forward delay	0 sec, up time 85	1 sec
Number of transitions to forwarding state: 1			
MST Config Message transmitted 430, received 0			

GigaEthernet0/1 of MST02 is designated forwarding

Port Info	Port ID 128.1	Priority 128	Cost 200000
Designated Root	Address 00E0.0F64.8365	Priority 32770	Cost 0

KYLAND

Desingated Bridge Address 00E0.0F64.8365 Priority 32770 Port ID 128.1 Timers: message expires in 0 sec, forward delay 0 sec, up time 851 sec Number of transitions to forwarding state: 1 MST Config Message transmitted 430, received 0

Instance Role Sts Cost Pri.Nbr Vlans Mapped

0	Desg FWD 200000	128.1	1,4-4094
1	Desg FWD 200000	128.1	2
2	Desg FWD 200000	128.1	3

14.3.1.24 show spanning-tree mstp protocol-migration

Syntax

The command above is used to check the protocol conversion information when the port is running under MSTP. **show spanning-tree mstp protocol-migration**

Parameter

None

Default

None

Usage Guidelines

None

Example

The following example shows the information about protocol conversion after the command **show spanning-tree mstp protocol-migration** is run. Note that port G0/1 has transferred to the 802.1D STP mode.

Switch#show spanning-tree mstp protocol-migration

MSTP Port Protocol Migration

Interface Pr

Protocol

----- -----

G0/1 802.1D

15 STP Optional Characteristic Configuration Commands

15.1 STP Optional Characteristic Configuration Commands

15.1.1 STP Optional Characteristic Configuration Commands

15.1.1.1 spanning-tree portfast

Syntax

To enable Port Fast features, use the **spanning-tree portfast** command in global configuration mode. To return to the default settings, use the no form of this command.

spanning-tree portfast {bpdufilter | bpduguard | default}

no spanning-tree portfast {bpdufilter | bpduguard | default}

To enable Port Fast features, use the s **spanning-tree portfast** command in interface configuration mode. To return to the default settings, use the no form of this command.

spanning-tree portfast [disable]

no spanning-tree portfast

Parameter

Parameter	Description
bpdufilter	Enables bpdu fiter.
bpduguard	Enables bpdu guard.
default	Specifies the default method.

Default

Disabled

Usage Guidelines

In SSTP/PVST mode, the Port Fast characteristic makes a port immediately enter Forwarding state without experiencing any status change process. This configuration is invalid in RSTP/MSTP mode.

After configuring Port Fast, BPDU Guard or BPDU Filter needs to be configured for protection.

Command Mode

Global and interface configuration mode

Example

This example shows how to enable PortFast mode globally:

KYLAND

Switch(config)# spanning-tree portfast default

Switch(config)#

This example shows how to enable PortFast mode on the interface g0/1:

Switch_config_g0/1# spanning-tree portfast

Switch_config_g0/1#

15.1.1.2 spanning-tree bpduguard

Syntax

To enable bridge protocol data unit (BPDU) guard on the interface, use the **spanning-tree bpduguard** command in interface configuration mode. To return to the default settings, use the no form of this command. **spanning-tree bpduguard** {**disable** | **enable**}

no spanning-tree bpduguard

Parameter

None

Default

Disabled

Usage Guidelines

In SSTP/PVST mode, if a port that configured BPDU Guard and Port Fast receives BPDU, this port will be forced to shutdown. User can restore it by the manual configuration. In RSTP/MSTP mode, if a port that configured BPDU Guard receives BPDU, this port will be configured to Blocking state for a period of time.

Command Mode

Interface configuration

Example

This example shows how to enable BPDU guard on the interface G0/1:

Switch_config_g0/1# spanning-tree bpduguard enable

Switch_config_g0/1#

15.1.1.3 spanning-tree bpdufilter

Syntax

To enable bridge protocol data unit (BPDU) filtering on the interface, use the **spanning-tree bpdufilter** command in interface configuration mode. To return to the default settings, use the **no** form of this command.

spanning-tree bpdufilter {disable | enable} no spanning-tree bpdufilter

Parameter

None

Default

Disabled

Usage Guidelines

In SSTP/PVST mode, if a port that configured BPDU Filter and Port Fast receives BPDU, the BPDU Filter and Port Fast characteristics on that port will be disabled automatically to restore the port to an ordinary port. Then this port must endure the wait from Listening to Learning before entering Forwarding state. This feature is invalid in RSTP/MSTP mode.

Command Mode

Interface configuration

Example

This example shows how to enable BPDU filtering on the interface G0/1:

Switch_config_g0/1# spanning-tree bpdufilter enable

Switch_config_g0/1#

15.1.1.4 spanning-tree uplinkfast

Syntax

To enable the debugging of the spanning-tree UplinkFast events, use the **spanning-tree uplinkfast** command. To disable the debugging output, use the no form of this command.

spanning-tree uplinkfast no spanning-tree uplinkfast

Parameter

None

Default

Disabled

Usage Guidelines

Uplink Fast characteristic is only valid in SSTP/PVST mode.

Command Mode

Global configuration mode

Example

The following example enables uplinkfast characteristic:

Switch(config)# spanning-tree uplinkfast

Switch(config)#

15.1.1.5 spanning-tree backbonefast

Syntax

To enable debugging of the spanning-tree BackboneFast events, use the **spanning-tree backbonefast** command. To disable the debugging output, use the no form of this command.

spanning-tree backbonefast

no spanning-tree backbonefast

Parameter

None

Default

Disabled

Usage Guidelines

Backbone Fast characteristic is only valid in SSTP/PVST mode.

Command Mode

Global configuration mode

Example

The following command enables backbonefast characteristic:

Switch(config)# spanning-tree backbonefast

Switch(config)#

15.1.1.6 spanning-tree guard

Syntax

To enable or disable the guard mode, use the spanning-tree guard command in interface configuration mode. To return to the default settings, use the no form of this command.

spanning-tree guard {loop | none | root}

no spanning-tree guard

Parameter

Parameter	Description
Іоор	Guard loop.
none	Guard none.
root	Guard root.

Default

Disabled

Usage Guidelines

Root Guard characteristic can prevent a port from becoming Root port due to receving high priority BPDU. Loop Guard characteristic can protect a Root Port or a Alternate Port when it becomes the Designated Port. This function can prevent a port from occuring the loop when it cannot continuously receive BPDU.

Command Mode

Interface configuration

Example

This example shows how to enable G0/1 to root guard:

Switch_config_g0/1# spanning-tree guard root

Switch_config_g0/1#

15.1.1.7 spanning-tree loopguard

Syntax

To enable loop guard as a default on all ports of a given bridge, use the **spanning-tree loopguard default** command in global configuration mode. To disable loop guard, use the **no** form of this command.

spanning-tree loopguard default

Default

None

Usage Guidelines

None

Command Mode

Global configuration

Example

The following command enables loopguard function: Switch(config)# spanning-tree loopguard default

Switch(config)#

15.1.1.8 spanning-tree loopfast

Syntax

spanning-tree loopfast

To configure Loop Fast, run **spanning-tree loopfast** in the global configuration mode. To return to the default setting, use the no form of this command.

spanning-tree loopfast

spanning-tree loopfast disable

To configure Loop Fast, run **spanning-tree loopfast**. To return to the default setting, use the no form of this command.

Parameter

None

Default

None

Usage Guidelines

Please configure this command under the guide of XXCOM's technical engineers.

Command Mode

Global configuration and interface configuration

Example

The following example shows how to enable loopfast on the interface G0/1 in the global configuration mode and disable the function.

Switch_config#spanning-tree loopfast Switch_config#int g0/1 Switch_config_g0/1#spanning-tree loopfast disable Switch_config_g0/1#exit Switch_config#

15.1.1.9 spanning-tree fast-aging

Syntax

spanning-tree fast-aging

no spanning-tree fast-aging

The commands are used to enable/disable address table fast aging.

spanning-tree fast-aging protection

no spanning-tree fast-aging protection

The commands are used to enable/disable address table fast aging protection.

spanning-tree fast-aging protection time value

no spanning-tree fast-aging protection time

The commands are used to configure address table aging protection time.

Parameter

Parameter	ParameterDescription
value	Aging protection time. The default is 15 seconds. The range is 10 to 60 seconds.

Default

Enable **fast-aging** and disable **protection** by default.

Usage Guidelines

None

Command Mode

Global configuration mode

Example

The following example shows how to enable fast aging protection and configure the protection time to 30s.

Switch_config#spanning-tree fast-aging protection

Switch_config#spanning-tree fast-aging protection time 30

15.1.1.10 spanning-tree fast-aging flush-fdb

Syntax

spanning-tree fast-aging flush-fdb no spanning-tree fast-aging flush-fdb Enable/disable FDB-Flush.

Parameter

None

Default

Enable FDB-Flush by default.

Usage Guidelines

Please configure this command under the guide of our's technical engineers.

FDB-Flush is independent of fast aging. FDB-Flush can be configured while **no spanning-tree fast-aging** is configured. Fast aging protection is invalid to FDB-Flush.

Command Mode

Global configuration

Example

The following example shows how to disable fast-aging and enable FDB-Flush:

Switch_config#no spanning-tree fast-aging

Switch_config#spanning-tree fast-aging flush-fdb

15.1.1.11 spanning-tree bpdu-terminal

Syntax

spanning-tree bpdu-terminal no spanning-tree bpdu-terminal Enable/disable BPDU Terminal.

Parameter

None

Default

Disable BPDU Terminal by default.

Usage Guidelines

BPDU Terminal function can disable the forwarding of BPDU when no spanning tree is running.

Command Mode

Global configuration mode

Example

The following example shows how to enable BPDU Terminal:

Switch_config#spanning-tree bpdu-terminal

16 Link Aggregation Configuration Commands

16.1 Link Aggregation Configuration Commands

16.1.1 Link Aggregation Configuration Commands

16.1.1.1 aggregator-group

Syntax

To configure interface aggregation, use the **aggregator-group** command. Use the no form of this command to restore the default value.

aggregator-group id mode {lacp |static }
no aggregator-group

Parameter

Parameter	Description
id	ID number of the logical port. Value range: 1 to 8.
Іаср	Uses LACP negotiation.
static	Negotiation is not used on an port.

Default

Disabled

Usage Guidelines

Port link aggregation is to bind several ports with the familiar attrubute to one logical port. LACP negotiation can be used to form binding process. Also the binding process can be forced to be formed without any LACP negotiation .

If the static aggregation is used, please make sure the port is link up and the VLAN attribute of the ports to be binded is the same.

You can select LACP negotiation mode when configuring port aggregation. Active—Places a port into an active negotiating state, in which the port initiates negotiations with remote ports by sending LACP packets. Passive—Places a port into a passive negotiating state, in which the port responds to LACP packets it receives but does not initiate LACP negotiation.

Switches of partial models doesn't support dynamic negotiation mode, therefore relevant configuration commands are not provided.

Command Mode

Interface configuration

Example

The following example shows how to bind g0/1 and port g0/2 to logic port port-aggregator 3, and then to use LACP negotiation.

Switch_config_g0/2#aggregator-group 3 mode lacp Switch_config_g0/2#int g0/1 Switch_config_g0/1#aggregator-group 3 mode lacp

16.1.1.2 aggregator-group load-balance

Syntax

To configure the load balance after port aggregation, use the **aggregator-group load-balance** command. Use the no form of this command to restore the default value.

aggregator-group load-balance { dst-mac| src-mac| both-mac| dst-ip| src-ip| both-ip }

no aggregator-group load-balance

Parameter

Parameter	Description
dst-mac	Sets destination mac address as standard.
src-mac	Sets source mac address as standard.
both-mac	Sets source and destination mac address as standard.
dst-ip	Sets destination ip address as standard.
src-ip	Sets source ip address as standard.
both-ip	Sets source and destination ip address as standard.

Default

scr-mac

Usage Guidelines

To ensure load balance of each physical port after port aggregation, use this command to equably distribute data flow on each physical port.

When dst-mac mode is selected, the distribution of data flow sets destination MAC address of the data packet as standard. The same MAC address is only sent out on a certain physical interface. The src-mac uses source MAC address as standard.

The supporting capability in load balance policy varies according to different models of switches. The command prompt only shows the sharing policy that the switch supports. If the switch doesn't support any sharing polich or just supports one of them, the relevant subcommands will not be displayed.

Command Mode

EXEC

Example

The following command modifies load balance of the port-aggregator to src-mac mode: Switch_config# int port-aggregator 1 Switch_config_p1#exit Switch_config# aggregator-group load-balance src-mac

16.1.1.3 show aggregator-group

Syntax

show aggregator-group [id] {detail|brief|summary}
To show the concrete information of aggregator-group, run the above command.

Parameter

Parameter	Parameter description
id	ID of a specific logic port.

Default

None

Usage Guidelines

This command is used to display the information about port aggregation.

Command Mode

EXEC

16.1.1.4 show interface port-aggregator

Syntax

show interface port-aggregator id

To show the concrete information of aggregator-group, run the above command.

Parameter

Parameter	Description
id	ID of a specific port.

Default

None

Usage Guidelines

This command is used to display the information about port aggregation.

Command mode

EXEC

Example

The following example show how to display the information about the port-aggregator 1:

Switch#show interface port-aggregator 1

Port-aggregator1 is down, line protocol is down

Hardware is PortAggregator, Address is 0000.0000.0000(0000.0000)

MTU 1500 bytes, BW 1000 kbit, DLY 2000 usec

Encapsulation ARPA, loopback not set

Members in this Aggregator:

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

0 packets input, 0 bytes, 0 no buffer

Received 0 broadcasts, 0 multicasts

0 input errors, 0 input discards

0 CRC, 0 frame, 0 overrun, 0 ignored

0 packets output, 0 bytes, 0 underruns

Transmited 0 broadcasts, 0 multicasts

0 output errors, , 0 discards

0 output buffer failures, 0 output buffers swapped out

Description: Members in this Aggregator, means to aggregate to the pysicalport of the logical prt.

The statistics values are explained as follows:

Pachets input means the input of all packets, including broadcast packets, multicast packets and unicast packets. Bytes means the byte volume of all packets.

Broadcasts means received broadcast packets.

Multicasts means received multicast packets.

Input errors means received error packets.

Input discards means that the received packets are dropped, such as the received packets when the interface protocol is down.

Pachets output means the output of all packets, including broadcast packets, multicast packets and unicast packets.

Bytes means the byte volume of all transmitted packets.

Broadcasts means transmitted broadcast packets.

Multicasts means transmitted multicast packets.

Output errors means transmitting error packets.

Output discards means that the transmitted packets are dropped, such as the transmitted packets when the interface protocol is down.

16.1.1.5 debug lacp errors

Syntax

To debug LACP errors information, use the **debug lacp errors** command. **debug lacp errors no debug lacp errors**

Parameter

None

Default

None

Usage Guidelines

This command is used to debug all errors information during lacp operation to locate the error.

Command Mode

EXEC

Example

Switch# debug lacp errors

Switch#

16.1.1.6 debug lacp state

Syntax

To debug lacp state, use the **debug lacp state** command. **debug lacp state no debug lacp state**

Parameter

None

Default

None

Command Mode

EXEC

Example

Switch# debug lacp state

Switch#

16.1.1.7 debug lacp packet

Syntax

To debug lacp packet information, use the **debug lacp packet** command.

debug lacp packet

no debug lacp packet

Parameter

None

Default

None

Command Mode

EXEC

Example

Switch# debug lacp packet

Switch#

17 PDP Configuration Commands

17.1 PDP Configuration Commands

17.1.1 PDP Commands

17.1.1.1 pdp timer

Syntax

[no|default] pdp timer seconds It is used to set the time of the PDP timer.

Parameter

Parameter	Description
seconds	Means the interval for PDP to transmit packets outside, which ranges
	from 5 seconds to 254 seconds.

Default

The default settings is 60 seconds.

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows that a switch transmits PDP packets every 5 seconds.

pdp timer 5

17.1.1.2 pdp holdtime

Syntax

[no|default] pdp holdtime seconds It is used to set the PDP holdtime.

Parameter

Parameter	Description
i arameter	Description

seconds	Means the time needed for deleting the neighbor information, which	
	ranges from 10 to 255 seconds.	

Default

The default settings is 180 seconds.

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows that the neighbor information is kept for 15 seconds.

pdp holdtime 15

17.1.1.3 pdp version

Syntax

[no] pdp version <1|2>
It is used to set the PDP version.

Parameter

Parameter	Description
version	Means the PDP version, which is 1 or 2.

Default

The default version is version 2.

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows that the PDP version of a switch is version 1.

pdp version 1

17.1.1.4 pdp run

Syntax

[no] pdp run It is used to enable PDP.

Parameter

None

Default

The PDP protocol is disabled.

Usage Guidelines

This command is configured in global configuration mode.

Example

The following example shows to disable PDP.

no pdp run

17.1.1.5 pdp enable

Syntax

[no] pdp enable It is used to enable or disable PDP on a port.

Parameter

None

Default

PDP is enabled by default.

Usage Guidelines

This command is set in port configuration mode and takes effect in port or global mode only when PDP is enabled.

Example

The following example shows that PDP is disabled on port g0/1.

switch_config_g0/1#no pdp enable

17.1.1.6 show pdp traffic

Syntax

show pdp traffic It is used to display the number of received PDP packets.

Parameter

None

Default

None

Usage Guidelines

It is used to browse the running of PDP.

Example

Switch_config#show pdp traffic

Packets output: 253491, Input: 0

Hdr syntax: 0, Chksum error: 0

No memory: 0, Invalid packet: 0

17.1.1.7 show pdp neighbor

Syntax

show pdp neighbor It is used to display the PDP neighbor.

Parameter

None

Default

None

Usage Guidelines

It is used to browse the running of PDP neighbor.

KYLAND

Example

Switch_config#show pdp neighbor Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater

Device-ID	Local-Intf	Hldtme	Port-ID	Platform	Capability
Switch	Gig0/1	169	Gig0/1	COM, RISC	R S

18 LLDP Configuration Commands

18.1 LLDP Configuration Commands

18.1.1 LLDP Commands

18.1.1.1 Ildp run

Syntax

lldp run

no lldp run To start up LLDP, run **lldp run**; to Disable LLDP, run **no lldp run**.

Parameter

None

Default

Disabled

Usage Guidelines

None

Command Mode

Global configuration mode

Example

The following command is used to start up LLDP. Switch_config# lldprun

18.1.1.2 Ildp holdtime

Syntax

Ildp holdtime time

no lldp holdtime

To configure the ttl value of LLDP, run **Ildp holdtime** *time*. To resume the default transmission delay, run **no Ildp holdtime**.

Parameter

Parameter	Description
time	Storage time of the transmitted message, ranging between zero to
	65535 seconds

Default

120s

Usage Guidelines

In normal, the remote information stored in the MIB will be updated before its aging. But the update frame may be lost during the transmission process, causing the information in the MIB to age. To prevent this, set the TTL value so that it updates the LLDP frame multiple times during the aging time.

Command Mode

Global configuration mode

Example

The following example shows how to set the ttl value of LLDP to 100 seconds.

Switch_config# lldpholdtime 100

Switch_config#

18.1.1.3 Ildp timer

Syntax

Ildp timer time

no lldp timer

To configure the transmission interval of LLDP, run **Ildp timer time**. To resume the default transmission delay, run **no Ildptimer**.

Parameter

Parameter	Description
time	Interval for transmitting the LLDP message, ranging between 5 to
	65534 seconds.

Default

30s

Usage Guidelines

The transmission interval of the LLDP message must be shorter than its storage time, ensuring multiple updates in the storage time and preventing error which is led by packet loss.

Command Mode

Global configuration mode

Example

The following example shows how to configure the transmission interval of LLDP to 24 seconds.

Switch_config# lldptimer24

Switch_config#

18.1.1.4 Ildp reinit

Syntax

Ildp reinit time

no lldp reinit

To configure the transmission delay of LLDP, run **Ildp reinit time**. To resume the default transmission delay, run **no Ildp reinit**.

Parameter

Parameter	Description
time	Transmission delay of LLDP, whose values range from two to five
	seconds

Default

2s

Usage Guidelines

LLDP information is automatically sent when the status or value of one or more information elements (managed objects) in the local system changes and the transmission timer expires. Since a single information change requires sending LLDP packets, a series of continuous information changes may trigger the transmission of many LLDP frames. Only one change is reported in each frame. To avoid this situation, network management defines waiting time between two consecutively senting LLDP frames.

Command Mode

Global configuration mode

Example

The following example shows how to set the transmission delay of LLDP to five seconds.

Switch_config# lldpreinit5

Switch_config#

18.1.1.5 IIdp tlv-select

Syntax

IIdp tlv-select t/v-type

no lldp tlv-select t/v-type

To add TLV which is transmitted by the LLDP message, run **lldp tlv-select** *tlv-type*. To delete TLV which is transmitted by the LLDP message, run **no lldp tlv-select** *tlv-type*.

Parameter

Parameter	Description	
tlv-type	TLV that can be sent or not whose values are:	
	management-address	management address TLV
	port-description ,	port description TLV
	system-capabilities	system capabilities TLV
	system-description,	system description TLV
	system-name	system name TLV

Default

All TLVs are sent.

Usage Guidelines

Three mandatory TLVs must be sent.

Command Mode

Global configuration mode

Example

The following example shows how to enable the port description not to be transmitted in the message.

 $\\ Switch_config \texttt{\#nolldptlv-selectport-description}$

Switch_config#

18.1.1.6 IIdp dot1-tlv-select

Syntax

IIdp dot1-tlv-select t/v-type

no lldp dot1-tlv-select *tlv-type*

To add TLV which is transmitted by the LLDP message, run **lldp dot1-tlv-select***tlv-type*. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description	
tlv-type	Stands for TLV that are available for selective transmission. The value	
	is:	
	port-vlan-id por	t vlan address TLV
	protocol-vlan-id	port and protocol VLAN ID TLV
	vlan-name	vlan name TLV
	protocol-identity	Protocol-identity TLV

Default

All TLVs are sent.

Usage Guidelines

The TLV of the protocol identity does not support transmission but supports reception.

Command Mode

Port Configuration Mode

Example

The following example shows how to enable the TLV not to be transmitted by deletion of the VLAN address of a port in the transmitted packet. switch_config#int g0/1

switch_config_g0/1#nolldpdot1-tlv-selectport-vlan-id switch_config_g0/1#

18.1.1.7 IIdp dot3-tlv-select

Syntax

IIdpdot3-tlv-selectt/v-type

no lldpdot3-tlv-selectt/v-type

To add TLV which is transmitted by the LLDP message, run **lldpdot3-tlv-select***tlv-type*. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description	
tlv-type	Stands for TLV that are available for selective transmission. The value	
	is:	
	link-aggregation	link aggregation TLV
	macphy-confg	MAC/Phy configuration/status TLV
	max-frame-size	max frame size TLV
	power	Power Via MDI TLV

Default

All TLVs are sent.

Usage Guidelines

None

Command Mode

Port Configuration Mode

Example

The following example shows how to enable the TLV not to be transmitted by deletion of the MAC/Phy configuration/status of a port in the transmitted packet. switch_config#int g0/1 switch_config_g0/1#nolldpdot3-tlv-select macphy-confg switch_config_g0/1#

18.1.1.8 IIdp med-tlv-select

Syntax

IIdpmed-tlv-selectt/v-type

no lldpmed-tlv-selectt/v-type

To add TLV which is transmitted by the LLDP message, run lldp med-tlv-select tlv-type. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description	
tlv-type	Stands for TLV that are	e available for selective transmission. The value
	is:	
	network-policy	network policy TLV
	inventory	detailed inventory management TLV
	location	Location trace TLV
	power-management	Expand Power Via MDI TLV

Default

All TLVs are sent.

Usage Guidelines

When the TLV of MED need be transmitted, the MED capability TLV must be transmitted. Hence it does not fall into the choice.

Command Mode

Port Configuration Mode

Example

The following example shows how to enable the TLV not to be transmitted by deletion of the detailed list management in a transmitted packet.

switch_config#int g0/1
switch_config_g0/1#nolldpmed-tlv-selectinventory
switch_config_g0/1#

18.1.1.9 Ildp transmit

Syntax

lldp transmit

no lldp transmit

To set the port to send the LLDP message, run **Ildp transmit**. To forbid receiving the LLDP message, run **no Ildp transmit**.

Parameter

None

Default

Transmittable LLDP message mode

Usage Guidelines

Only after the LLDP module is started can the command be valid.

Command Mode

Port configuration mode

Example

The following example shows how to set port g0/1 not to send the LLDP message.

switch_config_g0/1# no lldptransmit

switch_config_g0/1#

18.1.1.10 Ildp receive

Syntax

Ildpreceive

no lldpreceive

To set the port to the receivable LLDP message mode, run **Ildp receive**. To forbid receiving the LLDP message, run **no Ildp receive**.

Parameter

Default

Receivable LLDP message mode

Usage Guidelines

Only after the LLDP module is started can the configuration be valid.

Command Mode

Port configuration mode

Example

The following example shows how to set port g0/1 to the LLDP message mode.

switch_config_g0/1# no lldpreceive

switch_config_g0/1#

18.1.1.11 IIdp management-ip

Syntax

Ildp management-ipA.B.C.D

nolldp management-ip

To configure the management address of the LLDP port, run **Ildp management-ip A.B.C.D**. To resume the default transmission delay, run **no Ildp management-ip**.

Parameter

Parameter	Description
A.B.C.D	Stands for the management IP address that will be specified.

Default

The default management address is the IP of vlan interface corresponding to pvid. If the IP is not existed, the default management address is 0.0.0.0.

Usage Guidelines

The configured management IP address should be the IP address related with a port.

Command Mode

Interface configuration mode

Example

The following example shows how to set the management IP address of the port g0/1 to 90.0.0.99: switch_config_g0/1# lldpmanagement-ip 90.0.0.99 switch_config_g0/1#

18.1.1.12 IIdp trap-send

Syntax

Ildptranp-sendIldp-mibTo send trap notification to Ildp mib base, run the above command.Ildptranp-sendptopo-mib

To send trap notification to ptopo mib base, run the above command.

Parameter

None

Default

None

Usage Guidelines

None

Command Mode

Global Configuration mode

Example

The following example shows how to send trap notification to lldp mib base, run the following commands.

switch_config#lldp trap-send lldp-mib

switch_config#

The following example shows how to send trap notification to ptopo mib base, run the following command. switch_config#lldp trap-send ptopo-mib

switch_config#

18.1.1.13 location elin identifier id WORD

Syntax

location elin identifierid WORD

no location elin identifierid

To add the elin information, run location elin identifier id WORD; to delete the elin information, run

no location elin identifier id.

Parameter

Parameter	Description
id	Stands for the ID of the to-be-set elin, which ranges from 1 to 65535.
WORD	Stands for the content of the configured elin, which ranges from 10 to
	25 bytes.

Default

None

Usage Guidelines

None

Command Mode

Global configuration mode

Example

The following example shows how to set the identifier to 1 and the content of elin to 1234567890. switch_config# location elin identifier 1 1234567890 switch_config#

18.1.1.14 location civic identifier id

Syntax

location civic identifierid

no location civic identifierid

To enter the location configuration mode and set the civic information, run **location civic identifier id**. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
id	Stands for the ID of the to-be-set civic, which ranges from 1 to 65535.

Default

Usage Guidelines

After the system enters the location configuration mode, you can run the following commands to conduct the corresponding configuration to the civic of the ID. To return to the default setting, use the no form of this command.

Command	Purpose
(no) language WORD	Sets the language
(no) state WORD	Sets the state's (administrative district, district, province) name, such as shanghai.
(no) county WORD	Sets the name of a county.
(no) city WORD	Sets the name of a city.
(no) division WORD	Sets the name of a division.
(no) neighborhood WORD	Sets the name of neighborhood.
(no) street WORD	Sets the name of a street.
(no) leading-street-dir WORD	Sets the direction of a main street, such as N (north).
(no) trailing-street-suffix WORD	Sets the suffix of a small street, such as SW.
(no) street-suffix WORD	Sets the suffix of a street, such as platz.
(no) number WORD	Sets the street number, such as number 123.
(no) street-number-suffix WORD	Sets the suffix of the street number, such as number 1/2 of A road.
(no) landmark WORD	Sets the landmark, such as Colombia University.
(no) additional-location WORD	Sets the additional location.
(no) name WORD	Sets the information about a resident, such as Joe's haircut shop.
(no) postal-code WORD	Sets the postal code.
(no) building WORD	Sets the information about a building.
(no) unit WORD	Sets the information about a unit.
(no) floor WORD	Sets the information about a floor.

(no) room WORD	Sets the information about a room.
(no) type-of-place WORD	Sets the type of a place, such as office.
(no) postal-community WORD	Sets the name of a postal office.
(no) post-office-box WORD	Sets the name of a postal box, such as 12345.
(no) additional-code WORD	Sets the additional code.
(no) country WORD	Sets the name of a country.
(no) script WORD	Sets the script.

Command Mode

Global Configuration Mode

Example

The following example shows how to set the civic information of identifier 1.

Switch_config#location civic identifier 1

Switch_config_civic#language English

Switch_config_civic#city Shanghai

Switch_config_civic#street Curie

Switch_config_civic#script EN

Switch_config_civic#quit

Switch_config#

18.1.1.15 location elin/civic id

Syntax

location elin/civicid

no location elin/civic

To set the location for a port, run location elin/civic id. To delete the location of a port, run no location elin/civic.

Parameter

Parameter	Description
id	Stands for the ID of the to-be-set elin, which ranges from 1 to 65535.

Default

None

Usage Guidelines

None

Command Mode

Port Configuration Mode

Example

The following example shows how to set the elin and the civic for a port.

Switch_config#int g0/8

Switch_config_g0/8#location elin 1

Switch_config_g0/8#location civic 1

18.1.1.16 show lldp errors

Syntax

Showlldperrors

It is used to display the error information about the LLDP module.

Parameter

None

Default

None

Usage Guidelines

None

Command Mode

EXEC/Global configuration mode

Example

The following example shows how to view the error information of the lldp module.

switch_config#show lldp errors

LLDP errors/overflows:

Total memory allocation failures: 0

Total encapsulation failures: 0

Total table overflows: 0

switch_config#

18.1.1.17 show lldp interface

Syntax

Showlldpinterfaceinterface-name

To check the transmission and reception mode, run show lldp interface interface name.

Parameter

Parameter	Description
interface-name	Name of the interface, such as g0/1 and GigaEthernet0/1

Default

None

Usage Guidelines

After LLDP is started, you can check the state of the port.

Command Mode

EXEC/global configuration mode

Example

The following example shows how to check the transmission and reception mode of port g0/1.

```
switch_config#show lldp interface g0/1
GigaEthernet0/1:
Rx: enabled
Tx: enabled
switch_config#
```

KYLAND

18.1.1.18 show lldp neighbors

Syntax

show Ildpneighbors

It is used to display the simple information about neighbors.

Parameter

None

Default

None

Usage Guidelines

The command is used to display the simple information about neighbors.

Command Mode

EXEC / global configuration mode

Example

switch_config#show lldp neighbors

Capability Codes:

(R)Router,(B)Bridge,(C)DOCsIs Cable Device,(T)Telephone

(W)WLAN Access Point, (P)Repeater,(s)station,(O)Other

Device-ID	Local-Intf	Hldtme	Port-ID	Capability
switch	Gig0/2	115	Gig0/32	В
switch	Gig0/32	114	Gig0/2	В

Total entries dispalyed: 2

switch_config#

KYLAND

18.1.1.19 show lldp neighbors detail

Syntax

Showlldpneighborsdetail

It is used to display the detailed information about the neighbor.

Parameter

None

Default

None

Usage Guidelines

None

Command Mode

EXEC/global configuration mode

Example

switch_config#show lldp neighbors detail

chassis id: 00e0.0f61.ca53

port id: Gig0/32

port description: GigaEthernet0/32

system name: switch

system description: s3448 software, Version 2.0.1K serial: s35000456 Compiled: 2008-11-13 13:33:36 by 16170F032B9F

Time remaining: 98

system capabilities: R B

enabled capabilities: B

Managment Address:

IP: 192.168.213.62

Auto Negotiation -- supported, enabled

Physical media capabilitise:

100baseTX(FD)

100baseTX(HD)

10baseT(FD)

10baseT(HD)

Media Attachment Unit type: 16

chassis id: 00e0.0f61.ca35

port id: Gig0/2

port description: GigaEthernet0/2

system name: switch

system description: s3448 software, Version 2.0.1K

serial: s35000456

Compiled: 2008-11-13 13:33:36 by 16170F032B9F

Time remaining: 95

system capabilities: R B

enabled capabilities: B

Managment Address:

IP: 90.0.0.66

Auto Negotiation -- supported, enabled

Physical media capabilitise:

100baseTX(FD)

100baseTX(HD)

10baseT(FD)

10baseT(HD)

Media Attachment Unit type: 16

Total entries dispalyed: 2

switch#

18.1.1.20 show lldp traffic

Syntax

Showlldptraffic

To display all statistics information about LLDP, run **show lldp traffic**.

Parameter

None

Default

None

Usage Guidelines

None

Command Mode

EXEC/global configuration mode

Example

switch_config#show lldp traffic

LLDP traffic statistics:

Total frames out: 1599

- Total entries aged: 0
- Total frames in: 624

Total frames received in error: 0

- Total frames discarded: 0
- Total TLVs unrecognized: 0

switch_config#

18.1.1.21 show location elin

Syntax

showlocation elin

To display the elin configuration of the location, run the above command.

Parameter

None

Default

None

Usage Guidelines

None

Command Mode

EXEC/Global Configuration Mode

Example

Switch_config#show location elin

elin information:

elin 2: 0987654321

elin 1: 1234567890

total: 2

Switch_config#

18.1.1.22 show location civic [identifier id]

Syntax

show locationcivic[identifierid]

To display the civic information of the location, run the above command.

Parameter

id Stands for the ID of the to-be-set civic, which ranges from 1 to 65535.

Default

None

Usage Guidelines

None

Command Mode

Exec/ Global Configuration Mode

Example

Switch_config#show location civic

civic address information:

identifier: 2

Language: Chinese

Script: CN

identifier: 1

City: Shanghai

Language: English

Script: EN

total: 2

Switch_config#

18.1.1.23 clear lldp counters

Syntax

clearlldpcounters

To clear the statistics information, run clear lldp counters.

Parameter

Default

None

Usage Guidelines

None

Command Mode

EXEC

Example

switch#clear lldp counters

switch#

switch#show lldp traffic

LLDP traffic statistics:

Total frames out: 0

Total entries aged: 0

Total frames in: 0

Total frames received in error: 0

Total frames discarded: 0

Total TLVs unrecognized: 0

switch#

switch#show lldp errors LLDP errors/overflows: Total memory allocation failures: 0 Total encapsulation failures: 0 Total table overflows: 0

switch#

18.1.1.24 clear lldp table

Syntax

clearlldptable

To remove the neighbor list, run **clear lldp table**.

Parameter

Default

None

Usage Guidelines

None

Command Mode

EXEC

Example

switch#clear lldp table

switch#

switch#show lldp neighbors

Capability Codes:

(R)Router,(B)Bridge,(C)DOCsIs Cable Device,(T)Telephone

(W)WLAN Access Point, (P)Repeater,(s)station,(O)Other

Device-ID

Hldtme

Local-Intf

Capability

Port-ID

Total entries displayed: 0

19 Backuplink Configuration Commands

19.1 Backup Link Configuration Commands

19.1.1 Global Configuration Commands

19.1.1.1 backup-link-group id

Syntax

To set the BackupLink group, run the following command: **backup-link-group** *id* To delete the BackupLink group, run the following command: **no backup-link-group** *id*

Parameter

Parameter	Description	
ld	Stands for the instance ID of the backuplink group, ranging from	
	1 to 8.	

Default

The backuplink group is not configured by default.

Command Mode

Global configuration mode

Usage Guidelines

None

Example

Switch_config#backup-link-group 1

Switch_config#

Related Command

19.1.1.2 backup-link-group id preemption-mode forced {delay value}

Syntax

To set the port-based preemption mode for the backuplink group, run the following command: **backup-link-group** *id* **preemption-mode forced** {**delay** *value*}

To delete the port-based preemption mode for the backuplink group, run the following command: **no backup-link-group** *id*

Parameter

Parameter	Description
ld	Stands for the instance ID of the backuplink group, ranging from
	1 to 8.
value	Stands for the delay time, ranging from 0s to 60s.

Default

The backuplink group has not been set with the trait of port-based preemption by default.

Command Mode

Global configuration mode

Usage Guidelines

The **backup-link-group id preemption-mode forced {delay** value**}** command can be used to create the backuplink group directly.

Example

Switch_config#backup-link-group 1 preemption-mode forced delay 5

Switch_config#

Related Command

backup-link-group id backup-link-group id preemption-mode bandwidth {delay value}

19.1.1.3 backup-link-group id preemption-mode bandwidth {delay value}

Syntax

To set port bandwidth preemption mode for the backuplink group, run the following command:

backup-link-group id preemption-mode bandwidth {delay value}

To delete port bandwidth preemption mode for the backuplink group, run the following command: **no backup-link-group** *id*

Parameter

Parameter	Description
ld	Stands for the instance ID of the backuplink group, ranging from 1 to 8.
value	Stands for the delay time, ranging from 0s to 60s.

Default

The backuplink group has not been set with the trait of port bandwidth preemption by default.

Command Mode

Global configuration mode

Usage Guidelines

None

Example

Switch_config#backup-link-group 1 preemption-mode bandwidth delay 5

Switch_config#

Related Command

backup-link-group id backup-link-group id preemption-mode forced {delay value}

19.1.1.4 monitor-link-group id

Syntax

To set the MonitorLink group, run the following command: **monitor-link-group** *id* To delete the MonitorLink group, run the following command: **no monitor-link-group** *id*

Parameter

Parameter	Description
ld	Stands for the instance ID of the monitorlink group, ranging from 1 to 8.

Default

The MonitorLink group is not configured by default.

Command Mode

Global configuration mode.

Usage Guidelines

None

Example

Switch _config# monitor-link-group 1

Switch_config#

Related Command

None

19.1.2 Port Configuration Commands

19.1.2.1 backup-link-group id active

Syntax

To set a port to be an active port, run the following command:

backup-link-group *id* active

To cancel the active port, run the following command:

no backup-link-group id

Parameter

Parameter	Description
ld	Stands for the instance ID of the backuplink group, ranging from 1 to 8.

Default

The primary port is not configured by default.

Command Mode

The physical port configuration mode and the aggregation port configuration mode

Usage Guidelines

If the backuplink group is not established, it will be automatically created when you configure the backuplink group on a port directly.

Example

Switch_config#interface gigaEthernet 0/1

Switch_config_g0/1#backup-link-group 1 active

Switch_config_g0/1#exit

Related Command

backup-link-group id backup-link-group id backup

19.1.2.2 backup-link-group id backup

Syntax

To set a port to be a backup port, run the following command: **backup-link-group** *id* **backup** To cancel the backup port, run the following command: **no backup-link-group** *id*

Parameter

Parameter	Description
ld	Stands for the instance ID of the backuplink group, ranging from
	1 to 8.

Default

The backup port is not configured by default.

Command Mode

The physical port configuration mode and the aggregation port configuration mode

Usage Guidelines

If the backuplink group is not established, it will be automatically created when you configure the backuplink group on a port directly.

Example

Switch_config#interface gigaEthernet 0/1

Switch_config_g0/1#backup-link-group 1 backup

Switch_config_g0/1#exit

Related Command

backup-link-group id backup-link-group id active

19.1.2.3 share-load vlan vlanmap

Syntax

To set VLAN load balance for the backup port, run the following command:

share-load vlan vlanmap

To delete VLAN load balance for the backup port, run the following command: **no share-load vlan**

Parameter

Parameter	Description
vlanmap	Stands for the VLAN value, ranging from 1 to 4049.

Default

VLAN load balance is not set for the backup port by default.

Command Mode

The physical port configuration mode and the aggregation port configuration mode

Usage Guidelines

This command can be set only on the backup port, that is, a port must be set to be a backup port before VLAN load balance is set on the port.

Different BackupLink groups can be set to have the same VLAN group or the overlapped VLAN segments. If there are overlapped VLAN segments, the system will classify these VLANs into different MSTs (STGs) and conduct operations toward a group of ports, the statuses of these ports in different MSTs vary. So, you'd better rule out those overlapped VLAN groups when configuring load balance for VLANs.

Example

Switch_config#interface gigaEthernet 0/1

Switch_config_g0/1# share-load vlan 100-200

Switch_config_g0/1#exit

Related Command

backup-link-group id backup-link-group id backup

19.1.2.4 backup-link-group mmu transmit

Syntax

To set MMU transmission for the ports of the backuplink group, run the following command: **backup-link-group mmu transmit**

To delete MMU transmission for the ports of the backuplink group, run the following command: **no backup-link-group mmu**

Parameter

None

Default

The MMU transmission function for the ports of the backuplink group is not set by default.

Command Mode

The physical port configuration mode and the aggregation port configuration mode

Usage Guidelines

Only the ports of the backuplink group can be set to transmit, that is, the ports must be set to active or backup.

Example

Switch_config#interface gigaEthernet 0/1

Switch_config_g0/1#backup-link-group mmu transmit

Switch_config_g0/1#exit

Related Command

backup-link-group id

19.1.2.5 backup-link-group mmu receive

Syntax

To set MMU reception for ports, run the following command: backup-link-group mmu receive To delete MMU reception for ports, run the following command: no backup-link-group mmu

Parameter

None

Default

The MMU reception function for the ports is not set by default.

Command Mode

The physical port configuration mode and the aggregation port configuration mode

Usage Guidelines

The ports that are set to **receive** are not necessarily the ports of the backuplink group.

Example

Switch_config#interface gigaEthernet 0/1

Switch_config_g0/1#backup-link-group mmu receive

Switch_config_g0/1#exit

Related Command

None

19.1.2.6 monitor-link-group id uplink

Syntax

To set a port to be an uplink port, run the following command: **monitor-link-group** *id* **uplink** To cancel the uplink port configuration, run the following command: **no monitor-link-group** *id*

Parameter

Parameter	Description
ld	Stands for the instance ID of the monitorlink group, ranging from 1 to 8.

Default

The uplink port is not configured by default.

Command Mode

The physical port configuration mode and the aggregation port configuration mode

Usage Guidelines

If the Monitorlink group is not established, it will be automatically created when you configure the Monitorlink group on a port directly.

Example

Switch_config#interface gigaEthernet 0/1

Switch_config_g0/1# monitor-link-group 1 uplink

Switch_config_g0/1#exit

Related Command

monitor-link-group id monitor-link-group id downlink

19.1.2.7 monitor-link-group id downlink

Syntax

To set a port to be a downlink port, run the following command:

monitor-link-group *id* downlink

To cancel the downlink port configuration, run the following command: **no monitor-link-group** *id*

Parameter

Parameter	Description
ld	Stands for the instance ID of the monitorlink group, ranging from

1 to 8.

Default

The downlink port is not configured by default.

Command Mode

The physical port configuration mode and the aggregation port configuration mode

Usage Guidelines

If the Monitorlink group is not established, it will be automatically created when you configure the Monitorlink group on a port directly.

Example

Switch_config#interface gigaEthernet 0/1

 $Switch_config_g0/1\#\ monitor-link-group\ 1\ downlink$

Switch_config_g0/1#exit

Related Command

monitor-link-group id monitor-link-group id uplink

19.1.3 Show Configuration Commands

19.1.3.1 show backup-link-group id

Syntax

To display the information about the backuplink group, run the following command: **show backup-link-group** *id*

Parameter

Parameter	Description
ld	Stands for the instance ID of the backuplink group, ranging from 1 to 8.

Default

Command Mode

Monitoring mode, global configuration mode, node configuration mode or port configuration mode

Usage Guidelines

None

Example

Switch_config# show backup-link-group 1					
Active Interface	Backup Interface	State	Vlan State		
GigaEthernet0/2	GigaEthernet0/4	Forward/Block	Block/Block		
0	0				
Share load vlan: 100-200,port[GigaEthernet0/4] vlan state: Forwarding					
Preemption Mode: No Preempt					
Preemption Delay: 0 seconds					

Related Command

None

19.1.3.2 show monitor-link-group id

Syntax

To display the information about the monitorlink group, run the following command: **show monitor-link-group** *id*

Parameter

Parameter	Description	
ld	Stands for the instance ID of the monitorlink group, ranging from 1 to 8.	

Default

None

Command Mode

Monitoring mode, global configuration mode, node configuration mode or port configuration mode

Usage Guidelines

None

Example

Switch_config#show monitor-link-group 1 uplink interface: GigaEthernet0/2 Forwarding downlink interface: GigaEthernet0/1 Forwarding GigaEthernet0/3 Forwarding

Related Command

20 EAPS Configuration Commands

20.1 EAPS Configuration Commands

20.1.1 Global Configuration Commands

20.1.1.1 ether-ring

Syntax

To set an instance of ring and enter the node mode, run the following command: **ether-ring** *id* To cancel an instance of ring, run the following command: **no ether-ring** *id*

Parameter

Parameter	Description
id	ID of the node instance.

Default

By default, the ring node is not configured.

Command Mode

Global configuration mode

Usage Guidelines

STP should not be disabled before the configuration of node instance.

Example

S1_config#ether-ring 1

S1_config_ring1#

Related Command

20.1.1.2 control-vlan

Syntax

To set the control VLAN of the ring node, run the following command: **control-vlan** *vlan-id*

Parameter

Parameter	Description	
vlan-id	ID of the control VLAN	
	Value range: 1-4094	

Default

By default, the control VLAN of a node is not configured.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. Any VLAN can be configured as the control VLAN of the node. When specifying the control VLAN, the corresponding VLAN system will be created. In this case, the user does not need to manually create the system VLAN.

2. After the control VLAN and node types of the Ethernet ring are configured, you cannot modify the control VLAN even if the system exits from the Ethernet ring configuration mode because the Ethernet ring has already been started.

Example

S1_config#ether-ring 1

S1_config_ring1#control-vlan 2

Related Command

ether-ring master-node transit-node

20.1.1.3 master-node

Syntax

To configure an Ethernet ring as a master node, run the following command: **master-node**

Parameter

None

Default

By default, the node type is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. A node can be set to be a master node or a transit node.

2. After the control VLAN and node types of the Ethernet ring are configured, you cannot modify the control VLAN even if the system exits from the Ethernet ring configuration mode because the node of the Ethernet ring has already been started.

Example

S1_config#ether-ring 1

S1_config_ring1#control-vlan 2

S1_config_ring1#master-node

Related Commands

<u>control-vlan</u> <u>transit-node</u>

20.1.1.4 transit-node

Syntax

Configures the node type to be a transit node. **transit-node**

Parameter

By default, the node type is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. A node can be set to be a master node or a transit node.

2. After the control VLAN and node types of the Ethernet ring are configured, you cannot modify the control VLAN even if the system exits from the Ethernet ring configuration mode because the node of the Ethernet ring has already been started.

Example

S1_config#ether-ring 1

S1_config_ring1#control-vlan 2

S1_config_ring1#transit-node

Related Commands

<u>control-vlan</u> master-node

20.1.1.5 hello-time

Syntax

To configure the cycle for the master node to transmit the HEALTH packets of the Ethernet ring, run the following command:

hello-time value

To resume the Default of the cycle, run the following command:

no hello-time

Parameter	Description
value	Stands for a time value, whose unit is second.
	The Default is one second. The value ranges between 1 and 10
	seconds.

KYLAND

Default

By default, the hello-time is one second.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. The hello-time configuration validates only on the master node.

2. By default, the value of the hello-time is smaller than that of the fail-time, which avoids the Ethernet ring protocol from being shocked.

Example

- S1_config#ether-ring 1
- S1_config_ring1#control-vlan 2
- S1_config_ring1#master-node
- S1_config_ring1#hello-time 2

Related Command

fail-time

20.1.1.6 fail-time

Syntax

To configure the time cap of waiting for the HEALTH packets for the secondary port of the master node, run the following command:

fail-time value

To resume the Default of the fail-time, run the following command:

no fail-time

Parameter	Description
value	Stands for a time value, whose unit is second.
	The Default is three seconds. The value ranges between 3 and
	30 seconds.

By default, the fail-time is 3 seconds.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. The fail-time configuration validates only on the master node.

2. By default, the value of the fail-time is triple of the fail-time, which avoids the Ethernet ring protocol from being shocked. After modifying the hello-time, you need to adjust the fail-time accordingly.

Example

- S1_config#ether-ring 1
- S1_config_ring1#control-vlan 2
- S1_config_ring1#master-node
- S1_config_ring1#hello-time 2
- S1_config_ring1#fail-time 6

Related Command

hello-time

20.1.1.7 pre-forward-time

Syntax

Configures the time of maintaining the pre-forward state on the transit port. **pre-forward-time** value To resume the Default of the pre-forward-time, run the following command: **no pre-forward-time**

Parameter	Description
value	Stands for a time value, whose unit is second.
	The Default is three seconds. The value ranges between 3 and 30 seconds.

By default, the pre-forward-time is 3 seconds.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. The pre-forward-time configuration validates only on the transit node.

2. By default, the pre-forward-time on the transit node is three times the value of the hello-time on the master node, which avoids the network loop from being occurred after the transmission link recovers from disconnection. After the hello-time of the master node is modified, the corresponding pre-forward-time on the transit node need be adjusted.

Example

- S1_config#ether-ring 1
- S1_config_ring1#control-vlan 2
- S1_config_ring1#transit-node
- S1_config_ring1#pre-forward-time 8

Related Command

None

20.1.2 Port Configuration Commands

20.1.2.1 ether-ring primary-port

Syntax

To set a port to be the primary port of a master node, run the following command:

ether-ring *id* primary-port

To cancel the primary port configuration of a port, run the following command:

no ether-ring *id* primary-port

Parameter	Description
id	ID of the node instance.

The primary port is not configured by default.

Command Mode

The physical port configuration mode and the converged port configuration mode

Note: The versions of switch software prior to version 2.0.1L and the versions of hi-end switch software prior to version 4.0.0M do not support the configuration of the converged port.

Usage Guidelines

The primary port can be configured only after the control VLAN and node type of the Ethernet ring are configured, and when the node type is the master node.

Example

S1_config#interface GigaEthernet 0/1

S1_config_g0/1#ether-ring 1 primary-port

S1_config_g0/1#exit

Related Command

master-node ether-ring secondary-port

20.1.2.2 ether-ring secondary-port

Syntax

To set a port to be the secondary port of a master node, run the following command:

ether-ring id secondary-port

To cancel the secondary port configuration, run the following command:

no ether-ring *id* secondary-port

Parameter

Parameter	Description
id	ID of the node instance.

Default

The secondary port on the master node is not configured by default.

Command Mode

The physical port configuration mode and the converged port configuration mode

Note: The versions of switch software prior to version 2.0.1L and the versions of hi-end switch software prior to version 4.0.0M do not support the configuration of the converged port.

Usage Guidelines

The secondary port can be configured only after the control VLAN and node type of the Ethernet ring are configured, and when the node type must be the master node.

Example

S1_config#interface GigaEthernet 0/3

S1_config_g0/3#ether-ring 1 secondary-port

S1_config_g0/3#exit

Related Command

master-node ether-ring primary-port

20.1.2.3 ether-ring transit-port

Syntax

To set a port to be the transit port of a transit node, run the following command:

ether-ring id transit-port To cancel the transit port, run the following command:

no ether-ring *id* **transit-port**

Parameter

Parameter	Description
id	ID of the node instance.

Default

The transit port on the transit node is not configured by default.

Command Mode

The physical port configuration mode and the converged port configuration mode

Note: The versions of switch software prior to version 2.0.1L and the versions of hi-end switch software prior to version 4.0.0M do not support the configuration of the converged port.

Usage Guidelines

The transit port can be configured only after the control VLAN and node type of the Ethernet ring are configured, and when the node type must be the transit node. Two transit ports can be configured on one transit node.

Example

- S1_config_ring1#exit
- S1_config#interface GigaEthernet 0/1
- S1_config_g0/1#ether-ring 1 transit-port
- S1_config_g0/1#exit
- S1_config#interface GigaEthernet 0/3
- S1_config_g0/3#ether-ring 1 transit-port
- S1_config_g0/3#exit

Related Command

transit-node

20.1.3 Show Configuration Commands

20.1.3.1 show ether-ring

Syntax

To display the summary information about the Ethernet-ring node, run the following command: **show ether-ring** *id*

To display the detailed information about the Ethernet-ring node, run the following command:

show ether-ring *id* detail

To display the information about the Ethernet-ring port, run the following command:

show ether-ring id interface intf-name

To display the summary information about the Ethernet-ring node, run the following command: **show ether-ring** <cr>

Parameter	Description
id	ID of the node instance.
intf-name	Name of an interface

None

Command Mode

EXEC, global configuration mode, node configuration mode or port configuration mode

Usage Guidelines

None

Example

None

Related Command

None

21 MEAPS Configuration Commands

21.1 MEAPS Configuration Commands

21.1.1 Global Configuration Commands

21.1.1.1 mether-ring id1 domain id2

Syntax

To set an instance of ring and enter the node mode, run the following command: **mether-ring** *id1* **domain** *id2* To cancel an instance of ring, run the following command:

no mether-ring *id1* domain *id2*

Parameter

Parameter	Description
ld1	Stands for the node instance ID, which ranges from 0 to 7.
ld2	Stands for the domain instance ID, which ranges from 0 to 3.

Default

By default, the ring node is not configured.

Command Mode

Global configuration mode

Usage Guidelines

If the configured domain is 0, that is, id2 is o, domain id2 can be omitted.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1#

Related Command

None

21.1.1.2 master-node

Syntax

To configure an Ethernet ring as a master node, run the following command: **master-node**

Parameter

None

Default

By default, the node type is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. A node can be set to be a master node, a transit node, an edge node or an assistant node.

2. After the node type, the node ring's level and ring control VLAN are set, you need to decide whether to exist from the ring configuration mode and enable the ring's node, for if you conduct the two actions, the node type can never be modified.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1#master-node

S1_config_ring1#

Related Commands

transit-node edge-node assistant-node major-ring sub-ring control-vlan

21.1.1.3 transit-node

Syntax

Configures the node type to be a transit node.

KYLAND

transit-node

Parameter

None

Default

By default, the node type is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. A node can be set to be a master node, a transit node, an edge node or an assistant node.

2. After the node type, the node ring's level and ring control VLAN are set, you need to decide whether to exist from the ring configuration mode and enable the ring's node, for if you conduct the two actions, the node type can never be modified.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1# transit-node

S1_config_ring1#

Related Commands

master-node edge-node assistant-node major-ring sub-ring control-vlan

21.1.1.4 edge-node

To set the node type to be an edge node, run the following command: **edge-node**

Parameter

None

By default, the node type is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. A node can be set to be a master node, a transit node, an edge node or an assistant node.

2. After the node type, the node ring's level and ring control VLAN are set, you need to decide whether to exist from the ring configuration mode and enable the ring's node, for if you conduct the two actions, the node type can never be modified.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1# edge-node

S1_config_ring1#

Related Commands

master-node transit-node assistant-node major-ring sub-ring control-vlan

21.1.1.5 assistant-node

To set the node type to be an assistant edge node, run the following command: **assistant-node**

Parameter

None

Default

By default, the node type is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. A node can be set to be a master node, a transit node, an edge node or an assistant node.

2. After the node type, the node ring's level and ring control VLAN are set, you need to decide whether to exist from the ring configuration mode and enable the ring's node, for if you conduct the two actions, the node type can never be modified.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1# assistant-node

S1_config_ring1#

Related Commands

master-node transit-node edge-node major-ring sub-ring control-vlan

21.1.1.6 major-ring

Syntax

To set the node ring's level to be the major ring node, run the following command: **major-ring**

Parameter

None

Default

By default, the node ring's level is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. The node ring's level can only be set to one of the two levels: major-ring or sub-ring.

2. After the node type, the ring's level and ring control VLAN are set, you need to decide whether to exist from the ring configuration mode and enable the ring's node, for if you conduct the two actions, the node ring's level can

KYLAND

never be modified.

3. The edge node and the assistant node cannot be set to major ring.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1# transit-node

S1_config_ring1#major-ring

S1_config_ring1#

Related Commands

master-node transit-node edge-node assistant-node sub-ring control-vlan

21.1.1.7 sub-ring

Syntax

To set the node ring's level to be the sub-ring node, run the following command: **sub-ring**

Parameter

None

Default

By default, the node type is not configured.

Command Mode

Node configuration mode

Usage Guidelines

1. The node ring's level can only be set to one of the two levels: major-ring or sub-ring.

2. After the node type, the ring's level and ring control VLAN are set, you need to decide whether to exist from the ring configuration mode and enable the ring's node, for if you conduct the two actions, the node ring's level can never be modified.

3. If the edge node or the assistant node is set, they are regarded as sub-rings by default. Of course, you can set them not to be sub-rings.

Example

- S1_config#mether-ring 1 domain 2
- S1_config_ring1#master-node
- S1_config_ring1#sub-ring
- S1_config_ring1#

Related Commands

master-node transit-node edge-node assistant-node major-ring control-vlan

21.1.1.8 control-vlan

Syntax

To set the control VLAN of the ring node, run the following command: **control-vlan** *vlan-id*

Parameter

Parameter	Description
vlan-id	ID of the control VLAN
	Value range: 1-4094

Default

By default, the control VLAN of a node is not configured.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. You can set any VLAN to be the control VLAN of a node and at the same time the system will create the corresponding system VLAN and another control VLAN according to the ring level.

2. After the node type, the ring's level and ring control VLAN are set, you need to decide whether to exist from the ring configuration mode and enable the ring's node, for if you conduct the two actions, the ring control VLAN can never be modified.

Example

- S1_config#mether-ring 1 domain 2
- S1_config_ring1#master-node
- S1_config_ring1#sub-ring
- S1_config_ring1#control-vlan 2

S1_config_ring1#

Related Commands

master-node transit-node edge-node assistant-node major-ring sub-ring

21.1.1.9 single-subring-mode

Syntax

To configure the edge node (assistant edge node) in the single-subring mode, use this command. **single-subring-mode**

Parameter

None

Default

By default, the single-subring mode is not configured.

Command mode

Node configuration mode for the Ethernet ring

Usage Guidelines

- 1. Configuration in single-subring mode can only be valid in the edge node (assistant edge node).
- 2. In single-subring mode, there is no state check for message channel of subring protocol on the main ring. Therefore, ensure no double-belong network group in the ring network.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1#edge-node

S1_config_ring1#control-vlan 2

S1_config_ring1#single-subring-mode

Related Commands

None

21.1.1.10 hello-time

Syntax

To configure the cycle for the master node to transmit the HEALTH packets of the Ethernet ring, run the following command:

hello-time value

To resume the default value of the cycle, run the following command:

no hello-time

Parameter

Parameter	Description
value	Stands for a time value, whose unit is second.
	The default value is three seconds. The value ranges between 1
	and 10 seconds.

Default

By default, the hello-time is three seconds.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. The hello-time configuration validates only on the master node.

2. By default, the value of the hello-time is smaller than that of the fail-time, which avoids the Ethernet ring protocol from being shocked. After the hello-time is modified, the corresponding fail-time need be modified too.

Example

S1_config#mether-ring 1 domain 2

S1_config_ring1#master-node

S1_config_ring1#sub-ring

S1_config_ring1#control-vlan 2

S1_config_ring1#hello-time 4

Related Command

fail-time

21.1.1.11 fail-time

Syntax

To configure the time cap of waiting for the HEALTH packets for the secondary port of the master node, run the following command:

fail-time value

To resume the default value of the fail-time, run the following command:

no fail-time

Parameter

Parameter	Description
value	Stands for a time value, whose unit is second.
	The default value is three seconds. The value ranges between 3
	and 30 seconds.

Default

By default, the fail-time is 9 seconds.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. The fail-time configuration validates only on the master node.

2. By default, the value of the fail-time is triple of the fail-time, which avoids the Ethernet ring protocol from being shocked. After the hello-time is modified, the corresponding fail-time need be modified too.

Example

S1_config#mether-ring 1 domain 2

- S1_config_ring1#master-node
- S1_config_ring1#sub-ring
- S1_config_ring1#control-vlan 2

S1_config_ring1#hello-time 4

S1_config_ring1#fail-time 12

Related Command

hello-time

21.1.1.12 pre-forward-time

Syntax

Configures the time of maintaining the pre-forward state on the transit port. **pre-forward-time** value To resume the default value of the pre-forward-time, run the following command:

no pre-forward-time

Parameter

Parameter	Description
value	Stands for a time value, whose unit is second.
	The default value is three seconds. The value ranges between 3 and 30 seconds.

Default

By default, the pre-forward-time is 9 seconds.

Command Mode

Node configuration mode for the Ethernet ring

Usage Guidelines

1. The pre-forward-time configuration validates only on the transit node.

2. By default, the pre-forward-time on the transit node is three times the value of the hello-time on the master node, which avoids the network loop from being occurred after the transmission link recovers from disconnection. After the hello-time of the master node is modified, the corresponding pre-forward-time on the transit node need be adjusted.

Example

- S1_config#mether-ring 1 domain 2
- S1_config_ring1#transit-node
- S1_config_ring1#sub-ring

S1_config_ring1#control-vlan 2

S1_config_ring1#pre-forward-time 12

Related Command

None

21.1.2 Port Configuration Commands

21.1.2.1 mether-ring id1 domain id2 primary-port

Syntax

To set a port to be the primary port of a master node, run the following command: **mether-ring** *id1* **domain** *id2* **primary-port** To cancel the primary port configuration of a port, run the following command: **no mether-ring** *id1* **domain** *id2* **primary-port**

Parameter

Parameter	Description
ld1	ID of the node instance
ld2	ID of domain instance

Default

The primary port is not configured by default.

Command Mode

The physical port configuration mode and the converged port configuration mode

Usage Guidelines

The primary port can be configured only when the ring control VLAN, the ring's node type and the ring level are configured, and when the node type is the master node.

If the configured domain is 0, that is, id2 is o, domain id2 can be omitted.

Example

S1_config#interface GigaEthernet 0/1

- S1_config_g0/1# mether-ring 1 domain 2 primary-port
- S1_config_g0/1#exit

Related Commands

master-node

mether-ring id1 domain id2 secondary-port

21.1.2.2 mether-ring id1 domain id2 secondary-port

Syntax

To set a port to be the secondary port of a master node, run the following command: **mether-ring** *id1* **domain** *id2* **secondary-port** To cancel the secondary port configuration, run the following command: **no mether-ring** *id1* **domain** *id2* **secondary-port**

Parameter

Parameter	Description
ld1	ID of the node instance
ld2	ID of domain instance

Default

The secondary port on the master node is not configured by default.

Command Mode

The physical port configuration mode and the converged port configuration mode

Usage Guidelines

The secondary port can be configured only when the ring control VLAN, the ring's node type and the ring level are configured, and when the node type is the master node.

If the configured domain is 0, that is, id2 is o, domain id2 can be omitted.

Example

S1_config#interface GigaEthernet 0/3

S1_config_g0/3# mether-ring 1 domain 2 secondary-port

S1_config_g0/3#exit

Related Commands

master-node mether-ring id1 domain id2 primary-port

21.1.2.3 mether-ring id1 domain id2 transit-port

Syntax

To set a port to be the transit port of a transit node, run the following command: **mether-ring** *id1* **domain** *id2* **transit-port** To cancel the transit port, run the following command: **no mether-ring** *id1* **domain** *id2* **transit-port**

Parameter

Parameter	Description
ld1	ID of the node instance
ld2	ID of domain instance

Default

The transit port on the transit node is not configured by default.

Command Mode

The physical port configuration mode and the converged port configuration mode

Usage Guidelines

The primary port can be configured only when the ring control VLAN, the ring's node type and the ring level are configured, and when the node type is the transit node. Two transit ports can be configured on one transit node. If the configured domain is 0, that is, id2 is o, domain id2 can be omitted.

Example

S1_config_ring1#exit

- S1_config#interface GigaEthernet 0/1
- S1_config_g0/1# mether-ring 1 domain 2 transit-port
- S1_config_g0/1#exit
- S1_config#interface GigaEthernet 0/3
- S1_config_g0/3# mether-ring 1 domain 2 transit-port
- S1_config_g0/3#exit

Related Command

transit-node

21.1.2.4 mether-ring id1 domain id2 common-port

Syntax

To set a port to be a public port of an edge node (assistant edge node), run the following command: **mether-ring** *id1* **domain** *id2* **common-port**

To cancel the public port, run the following command:

no mether-ring *id1* domain *id2* common-port

Parameter

Parameter	Description
ld1	ID of the node instance
ld2	ID of domain instance

Default

By default, there is no configuration of the public port of an edge node.

Command Mode

The physical port configuration mode and the converged port configuration mode

Usage Guidelines

The public port can be configured only when the ring control VLAN, the ring's node type and the ring level are configured, and when the node type is the edge node.

If the configured domain is 0, that is, id2 is o, domain id2 can be omitted.

Example

S1_config_ring1#exit

- S1_config#interface GigaEthernet 0/1
- S1_config_g0/1# mether-ring 2 domain 2 common-port

S1_config_g0/1#exit

Related Command

edge-node assistant-node mether-ring id1 domain id2 edge-port

21.1.2.5 mether-ring id1 domain id2 edge-port

Syntax

To set a port to be an edge port of an edge node (assistant edge node), run the following command: **mether-ring** *id1* **domain** *id2* **edge-port**

To cancel the edge port configuration of a port, run the following command:

no mether-ring *id1* domain *id2* edge-port

Parameter

Parameter	Description
ld1	ID of the node instance
ld2	ID of domain instance

Default

By default, there is no configuration of the edge port of an edge node.

Command Mode

The physical port configuration mode and the converged port configuration mode

Usage Guidelines

The edge port can be configured only when the ring control VLAN, the ring's node type and the ring level are configured, and when the node type is the edge node.

If the configured domain is 0, that is, id2 is o, domain id2 can be omitted.

Example

S1_config_ring1#exit

- S1_config#interface GigaEthernet 0/3
- S1_config_g0/3# mether-ring 2 domain 2 edge-port
- S1_config_g0/3#exit

Related Commands

edge-node assistant-node mether-ring id1 domain id2 common-port

21.1.3 Show Configuration Commands

21.1.3.1 show mether-ring

Syntax

To display the summary information about the Ethernet-ring node, run the following command: **show mether-ring** *id1* **domain** *id2*

To display the detailed information about the Ethernet-ring node, run the following command:

show mether-ring *id1* domain *id2* detail

To display the information about the Ethernet-ring port, run the following command:

show mether-ring id1 domain id2 interface intf-name

To display the summary information about the Ethernet-ring node, run the following command: **show mether-ring**

Parameter

Parameter	Description
ld1	ID of the node instance
ld2	ID of domain instance
intf-name	Name of an interface

Default

None

Command Mode

Monitoring mode, global configuration mode, node configuration mode or port configuration mode

Usage Guidelines

If the configured domain is 0, that is, id2 is o, domain id2 can be omitted.

Example

None

Related Command

None

22 **UDLD Configuration Commands**

22.1 UDLD Configuration Commands

22.1.1 UDLD Configuration Commands

UDLD configuration commands include:

- udld enable
- udld aggressive
- udld port
- udld port aggressive
- udld message
- udld reset
- show udld

22.1.1.1 udid enable

Syntax

udld enable

To enable global UDLD function in normal mode, use **udid enable** command.

no udld enable

To disable global UDLD function in normal mode, use **no udid enable** command.

Parameter

None

Default

None

Usage Guidelines

Enable UDLD function of all interfaces in normal mode. In normal mode, if cannot connect, UDLD will set the interface in the state of undetermined, without disabling the interface protocol. If the UDLD is thought to be a two-way link, then the interface is in state of Bidirectional.

Command Mode

Global configuration mode

Example

The following example shows how to enable UDLD in normal mode:

Switch_config#udld enable

22.1.1.2 udld aggressive

Syntax

udld aggressive

To enable global UDLD function in aggressive mode, use **udld aggressive** command. **no udld aggressive** To disable global UDLD function in aggressive mode, use **udld aggressive** command.

Parameter

None

Default

None

Usage Guidelines

Enable UDLD function of all interfaces in aggressive mode. In aggressive mode, if UDLD cannot connect and fail to reconnect, there is consider to be serious network problem for communication interruption. Then UDLD will disable the interface protocol and the interface is in the state of errdisable. If the UDLD is thought to be a two-way link, then the interface is in state of Bidirectional.

Command Mode

Global configuration mode

Example

The following example shows how to enable UDLD in aggressive mode:

Switch_config#udld aggressive

22.1.1.3 udld port

Syntax

udld port

To enable UDLD function of the port in normal mode, use **udid port** command.

KYLAND

no udld port

To disable UDLD function of the port in normal mode, use **no udld port** command.

Parameter

None

Default

None

Usage Guidelines

Enable UDLD function of its interface in normal mode. In normal mode, if cannot connect, UDLD will set the interface in the state of undetermined, without disabling the interface protocol. If the UDLD is thought to be a two-way link, then the interface is in state of Bidirectional.

Command Mode

Interface configuration mode

Example

The following example shows how to enable UDLD of the port in normal mode:

Switch_config_g0/1#udld port

22.1.1.4 udld port aggressive

Syntax

udld port aggressive

To enable UDLD function of the port in aggressive mode, use udld port aggressive command.

no udld port aggressive

To disable UDLD function of the port in aggressive mode, use **no udid port aggressive** command.

Parameter

None

Default

None

Usage Guidelines

Enable UDLD function of its interface in aggressive mode. In aggressive mode, if UDLD cannot connect and fail to

reconnect, there is consider to be serious network problem for communication interruption. Then UDLD will disable the interface protocol and the interface is in the state of errdisable. If the UDLD is thought to be a two-way link, then the interface is in state of Bidirectional.

Command Mode

Interface configuration mode

Example

The following example shows how to enable UDLD of the port in aggressive mode:

Switch_config_g0/1#udld port aggressive

22.1.1.5 udld message

Syntax

udld message time

To set udld message intervals in aggressive mode, use above command.

no udld message

To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
time	Interval time in aggressive mode, range: 7-90s

Default

15s

Usage Guidelines

Set the udld message interval in aggressive mode. Only after restarting the aggressive mode, new interval time can be valid.

Command Mode

Global configuration mode

Example

The following example shows how to set the udld message interval in aggressive mode as 7s, which is valid after restarting the aggressive mode:

Switch_config#udId message 7

22.1.1.6 udld reset

Syntax

udld reset

To reset the interface disabled by UDLD mode protocol, use above command.

Parameter

None

Default

None

Usage Guidelines

Reset the interface disabled by UDLD mode protocol.

Command Mode

Management configuration mode

Example

The following example shows how to reset the interface disabled by UDLD module:

Switch#udld reset

1 ports shutdown by UDLD were reset.

%%UDLD-2-UDLD_PORT_RESET: UDLD reset interface GigaEthernet0/1.

%%PM-4-ERR_RECOVER: Attempting to recover from udld err-disable state on GigaEthernet0/1.

22.1.1.7 show udld

Syntax

show udld interface [interface]

To display the connection information of running UDLD, use above command.

Parameter	Description
-----------	-------------

interface Display UDLD operation information of the specified interface.

Default

None

Usage Guidelines

Display the operation information of UDLD module. When not input the interface parameter, UDLD operation information of all interfaces will be displayed. When input the interface parameter, only display the UDLD information of the interface whose parameter is input.

Command Mode

Management/Global configuration mode

Example

The following example shows how to display the operation state information of UDLD module in all interfaces:

Switch_config#show udld

Interface GigaEthernet0/1

Port enable administrative configuration setting: Enabled

Port enable operational state: Enabled

Current bidirectional state: Unknown

Current operational state: Link down

Message interval: 15

Time out interval: 1

No neighbor cache information stored

Interface GigaEthernet0/2

Port enable administrative configuration setting: Enabled

Port enable operational state: Enabled

Current bidirectional state: Unknown

Current operational state: Link down

Message interval: 15

KYLAND

Time out interval: 1

No neighbor cache information stored

Interface GigaEthernet0/3

Port enable administrative configuration setting: Enabled

Port enable operational state: Enabled

Current bidirectional state: Unknown

Current operational state: Link down

Message interval: 15

Time out interval: 1

No neighbor cache information stored

••••

....

....

The following example shows how to display the operation state information of UDLD module in thterface G0/1: Switch_config#show udld interface g0/1

Interface GigaEthernet0/1

Port enable administrative configuration setting: Enabled Port enable operational state: Enabled Current bidirectional state: Unknown Current operational state: Link down Message interval: 15 Time out interval: 1 No neighbor cache information stored Switch_config#

23 **IGMP-SNOOPING Configuration Commands**

23.1 **IGMP-SNOOPING Configuration Commands**

23.1.1 IGMP-SNOOPING Commands

IGMP-SNOOPING configuration commands include:

- ip igmp-snooping
- ip igmp-snooping static
- ip igmp-snooping immediate-leave
- ip igmp-snooping mrouter
- ip igmp-snooping dlf-drop
- ip igmp-snooping policy
- ip igmp-snooping router age
- ip igmp-snooping response time
- ip igmp-snooping querier
- ip igmp-snooping querier timer
- ip igmp-snooping forward-I3-to-mrouter
- ip igmp-snooping sensitive
- ip igmp-snooping v3-leave-check
- ip igmp-snooping forward-wrongiif-within-vlan
- ip igmp-snooping limit
- show ip igmp-snooping
- show ip igmp-snooping vlan
- show ip igmp-snooping timer
- show ip igmp-snooping group
- show ip igmp-snooping statistics
- debug ip igmp-snooping packet
- debug ip igmp-snooping timer
- debug ip igmp-snooping event
- debug ip igmp-snooping error
- debug ip igmp-snooping

23.1.1.1 igmp-snooping

Syntax

To enable the IGMP-snooping of VLAN, use the ip igmp-snooping command. Use the no form of this command to

restore the default.
ip igmp-snooping [vlan vlan_id]
no ip igmp-snooping [vlan vlan_id]

Parameter

Parameter	Description
vlan id	VLAN identity.Value is from 1 to 4094.

Default

Disabled

Usage Guidelines

If not specified the vlan parameter, this command enable or disable all vlans in the system (IGMP-snooping currently can be ran on 16 vlans at most at the same time.)

Example

The following command enables IGMP snooping of vlan 1:

switch(config)# ip igmp-snooping vlan 1

switch(config)#

23.1.1.2 igmp-snooping static

Syntax

ip igmp-snooping vlan *vlan_id* **static** *A.B.C.D* **interface** *intf* **no ip igmp-snooping vlan** *vlan_id* **static** *A.B.C.D* **interface** *intf*

Parameter

Parameter	Description
vlan id	VLAN identity.Value is from 1 to 4094.
A.B.C.D	Specifies the IP address of multicast
inft	Specifies the interface

Default

None

Usage Guidelines

Use this command to configure the static multicast address of vlan. Use the no form of this command to delete the address.

Example

The following command adds the static multicast address at 234.5.6.7 to the fast ethernet interface G0/5 of vlan 2:

switch_config# ip igmp-snooping vlan 2 static 234.5.6.7 interface gigaEthernet0/5

switch_config#

Note:

224.0.0.0-224.0.0.255, as the multicast address which cannot be routed, cannot be registered to each interface.

23.1.1.3 igmp-snooping immediate-leave

Syntax

In global configuration mode:

To configure the immediate-leave characteristic of vlan, use the **ip igmp-snooping vlan** command. Use the no form of this command to restore the default.

ip igmp-snooping vlan vlan_id immediate-leave

no ip igmp-snooping vlan vlan_id immediate-leave

Parameter

Parameter	Description
vlan id	VLAN identity. Value is from 1 to 4094.

Default

Disabled

Syntax

In interface configuration mode:

To configure the immediate-leave characteristic of vlan, use the **ip igmp-snooping immediate-leave** command. Use the no form of this command to restore the default.

ip igmp-snooping immediate-leave

no ip igmp-snooping immediate-leave

Parameter

None

Default

Disabled

Usage Guidelines

Configuring the immediate-leave feature of a VLAN or port allows the switch to delete the port from the port list of the corresponding multicast group immediately after receiving the leave message on the port, instead of turning on the timer and waiting for other hosts to join this multicast. If other hosts under the same port also belong to this group but do not want to leave, the multicast communication of these users may be affected, and the immediate-leave function should not be enabled at this time.

The immediate-leave configuration of the port and the immediate-leave configuration of the VLAN work simultaneously.

Example

The following command enables immediate-leave characteristic of vlan 1:

switch_config# ip igmp-snooping vlan 1 immediate-leave

switch_config#

The following command enables immediate-leave characteristic of interface g0/8:

switch_config_g0/8#ip igmp-snooping immediate-leave

23.1.1.4 igmp-snooping mrouter

Syntax

ip igmp-snooping vlan vlan_id mrouter interface intf no ip igmp-snooping vlan vlan_id mrouter interface intf

Parameter

Parameter	Description
vlan id	VLAN identifier. The value ranges from 1 to 4094.
intf	Interface

Default

None

Usage Guidelines

The command is used to configure the static route port. Use the no form of this command to delete the route port.

Only static routing ports can be configured for existing VLANs.

Example

The following example shows how to add the gigabit Ethernet G0/5 of VLAN 2 as its static route port.

switch_config# ip igmp-snooping vlan 2 mrouter interface GigaEthernet0/5

switch_config#

23.1.1.5 igmp-snooping policy

Syntax

ip igmp-snooping policy word no ip igmp-snooping policy

Parameter

Parameter	Description	
Word	IP ACL name	

Default

None

Usage Guidelines

The command is used to configure the IP ACL list when igmp-snooping adds the multicast forwarding table. To return to the default setting, use the no form of this command. Ipacl must already exist when configuring this command.

Example

The following example shows how to detect the IP ACI named 123 when adding the multicast forwarding table.

switch_config# ip igmp-snooping policy 123

switch_config#

23.1.1.6 igmp-snooping dlf-drop

Syntax

ip igmp-snooping dlf-drop no ip igmp-snooping dlf-drop

Default

Parameter	Description
	Filter unregistered address multicast packets.

Usage Guidelines

This command is used to set the multicast packets whose destination multicast addresses are not registered to the filtration mode. The negative form of this command is used to resume the default settings.

Example

The following example shows how to drop the multicast packets with unregistered destination addresses in all VLANs.

switch_config# ip igmp-snooping dlf-drop

switch_config#

23.1.1.7 igmp-snooping router age

Syntax

ip igmp-snooping timer router-age timer_value
no ip igmp-snooping timer router-age

Parameter

Parameter	Description
time value	Query timer time. Value is from 10 to 2147483647.

Default

260 seconds

Usage Guidelines

Use this command to configure query timer time. Use the no form of this command to restore the default value.

Example

The following example configures router-age to 300 seconds

switch(config)# ip igmp-snooping timer router-age 300

switch(config)#

23.1.1.8 igmp-snooping response time

Syntax

To configure the maximum response time of IGMP-snooping, use IGMP-snooping command. Use the no form of this command to restore the default value.

ip igmp-snooping timer response-time timer_value

no ip igmp-snooping timer response-time

Parameter

Parameter	Description
time value	Query timer time. The value ranges from 1 to 2147483647.

Default

15 seconds

Usage Guidelines

None

Example

The following example configures response-time to 20 seconds:

switch(config)# ip igmp-snooping timer response-time 20

switch(config)#

23.1.1.9 igmp-snooping querier

Syntax

To activate IGMP-snooping querier mechanism or configure the source ip address of the spontaneous query packets. Use the no form of this command to restore the default value.

ip igmp-snooping querier [address <ip_addr>]

no ip igmp-snooping querier [address <ip_addr>]

Parameter

Parameter	Description
ip_addr	Tthe common unicast IP address

Default

Disabled, the default source IP address is 10.0.0.200.

Usage Guidelines

None

Example

The following command activates IGMP quirier:

switch(config)# ip igmp-snooping querier

switch(config)#

23.1.1.10 igmp-snooping querier querier-timer

Syntax

ip igmp-snooping querier querier-timer *time_value* no ip igmp-snooping querier querier-timer

To configure the forward interval of forwarding query packets by the local querier, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parame ter	Description
time_value	The query interval of the local querier.

Default

The default interval is 200s when enable the Querier function.

Usage Guidelines

None

Example

The following command shows how to configure the query period of the local querier as 140s.

switch_config# ip igmp-snooping querier querier-timer 140

switch_config#

23.1.1.11 igmp-snooping forward-I3-to-mrouter

Syntax

ip igmp-snooping forward-I3-to-mrouter

no ip igmp-snooping forward-I3-to-mrouter

To send the data packets to the multicast routing port, run **ip igmp-snooping forward-I3-to-mrouter**. To return to the default setting, use the no form of this command.

Parameter

None

Default

If the forward-I3-to-mrouter command is not enabled, the data packets will not be sent to the related multicast routing port.

Usage Guidelines

This command is mainly to send the data packets to the IGMP JOIN port and meanwhile to the multicast routing port. Especially in case of L3 multicast cascading, the upstream L3 switches cannot receive the IGMP JOIN packets from a relative group and hence cannot learn the information about the relative group, and then the data packets will be sent to all physical ports in the L3 egress VLAN. After this command is run, the data packets will only be sent to the multicast routing port, which is registered on PIM-SM.

Example

The following example shows how to activate IGMP forward-I3-to-mrouter and make the upstream multicast data packets be sent to the multicast routing port:

switch_config# ip igmp-snooping forward-I3-to-mrouter

switch_config#

23.1.1.12 igmp-snooping sensitive

Syntax

ip igmp-snooping sensitive [value int<3-30>]

no ip igmp-snooping sensitive [value]

To activate IGMP-snooping sensitive mechanism or set the value of sensitive, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
int	3-30, unit: second

Default

The sensitive function is disabled. The default valueis 5s.

Usage Guidelines

This command is mainly used to modify the router-age of the mrouter port in active state and deliver the new query packets rapidly when a port in trunk mode is shut down.

Example

The following example shows how to activate IGMP sensitive and set the route-age of mrouter to be a converged one.

switch_config# ip igmp-snooping sensitive

switch_config# ip igmp-snooping sensitive value 10

23.1.1.13 igmp-snooping v3-leave-check

Syntax

ip igmp-snooping v3-leave-check

no ip igmp-snooping v3-leave-check

To send the special query packets after the v3-leave packet is received, run ip igmp-snooping v3-leave-check; To return to the default setting, use the no form of this command.

Default

v3-leave-check is disabled and the special query packet will not be sent after v3-leave packet is received.

Parameter

None

Usage Guidelines

None

Example

The following example shows how to activate IGMP v3-leave-check and send the special query packet after the v3-leave packet is received.

switch_config# ip igmp-snooping v3-leave-check

switch_config#

23.1.1.14 igmp-snooping forward-wrongiif-within-vlan

Syntax

ip igmp-snooping forward-wrongiif-within-vlan

no ip igmp-snooping forward-wrongiif-within-vlan

To send the multicast data packets, received from the wrongiif port, to the relative physical ports in the local vlan, run ip igmp-snooping forward-wrongiif-within-vlan; To return to the default setting, use the no form of this command.

Parameter

None

Default

This command is enabled by default and the multicast packets from the wrongilf port will be sent to the relative physical ports.

Usage Guidelines

This comman takes its importance only when the L3 multicast is enabled. After this command is enabled, the multicast packets, entering from the wrongiif port, will be sent to the physical ports that are added into the group of vlan; otherwise, the multicast packets will be dropped.

Example

The following example shows how to activate IGMP forward-wrongiif-within-vlan, and how to send the multicast packets from the wrongiif port to the relative physical ports in the local VLAN:

switch_config# ip igmp-snooping forward-wrongiif-within-vlan

switch_config#

23.1.1.15 igmp-snooping filter

Syntax

ip igmp-snooping filter word no ip igmp-snooping filter

Parameter

Parameter	Description	
word	IP ACL name	

Default

None

Usage Guidelines

If the IPACL function of IGMP-snooping port is enabled, the IPACL will be used under the port to specify the packets of a multicast IP address to be processed or ignored.

Command Mode

Interface configuration mode

Example

The following example shows how to configure IP ACL deny-pc on port g0/2:

switch_config#ip access-list standard deny-pc

switch_config_std#deny 239.255.255.250 255.255.255.255

switch_config_std#permit any

switch_config_std#exit

switch_config#interface g0/2

switch_config_g0/2#ip igmp-snooping filter deny-pc

23.1.1.16 igmp-snooping vlan filter

Syntax

ip igmp-snooping vlan *vlanid-list* **filter** *ipaddr-list* **no ip igmp-snooping vlan** *vlanid-list* **filter** *ipaddr-list*

Parameter

Parameter	Description
Vlanid-list	VLAN ID list, connect with "," and "-". Range from 1 to 4094.
ipaddr-list	Multicast IP address list, connect with "," and "-" ("," and "-" must be followed by at least 1 space).

Default

None

Usage Guidelines

If multicast filtering in the IGMP-snooping VLAN is enabled, only the multicast group report request in the filtering list will be accepted and added to the group in the VLAN, otherwise it will be discarded and no group will be added.

Command Mode

Global configuration mode

Example

The following example shows how to configure filter list on VLAN 2:

switch_config#ip igmp-snooping vlan 2 filter 230.1.1.1 - 230.1.1.100

23.1.1.17 igmp-snooping limit

Syntax

ip igmp-snooping limit value no ip igmp-snooping limit

Parameter

Parameter

Description

value 1	1-2048
---------	--------

Default

2048

Usage Guidelines

The command configures the max multicast IP address number in the port of IGMP-snooping. The command will estimate whether the applied groups have reached the configuration number when IGMP-snooping generating the forward table. Otherwise, the table of the port is no longer generated.

Command Mode

Interface configuration mode

Example

The following example shows how to set the max number of the joining group as 1000.

switch_config_G0/1# ip igmp-snooping limit 1000

switch_config_G0/1#

23.1.1.18 igmp-snooping report-suppression

Syntax

ip igmp-snooping report-suppression [max-number value] no ip igmp-snooping report-suppression

Parameter

Parameter	Description
value	This parameter specifies the maximum number of reports that can be forwarded to the same multicast group in a query period within the same VLAN after report-suppression is enabled. The value ranges from 1 to 5. If this command is configured without keyword max-number, the maximum number of report forwarding is 1.

Default

Disabled.

Usage Guidelines

If the report-suppression function of IGMP-snooping is configured, in the same VLAN, for the report request of a multicast group, whether the client enables the function in the initial state or the response to the query, the switch forwards only a limited number to the mrouter port. The forwarding number is determined by the Parameter after max-number, and the range is from 1 to 5. If the max-number keyword is omitted, the number of forwardings is 1 by default.

This function is to reduce the processing cost of the local switch and the upstream switch and save the bandwidth for forwarding report packets when the IGMP Snooping function is normal.

Command Mode

Global configuration mode

Example

The following example shows how to enable report-suppression function of IGMP-snooping.

switch_config# ip igmp-snooping report-suppression

switch_config#

23.1.1.19 igmp-snooping proxy-leave

Syntax

ip igmp-snooping proxy-leave no ip igmp-snooping proxy-leave

Parameter

None.

Default

Disabled.

Usage Guidelines

If the IGMP-snooping proxy-leave function is configured, in the same VLAN, the switch sends the leave message of the multicast group to the upstream device only after all members of a multicast group have truly left the group. This function is to reduce the processing cost of the local switch and the upstream switch and save the bandwidth for forwarding report packets when the IGMP Snooping function is normal.

Command Mode

Global configuration mode

Example

The following example shows how to enable the proxy-leave function of IGMP-snooping.

switch_config# ip igmp-snooping proxy-leave

switch_config#

23.1.1.20 show ip igmp-snooping

Syntax

show ip igmp-snooping

Parameter

None

Default

None

Usage Guidelines

Use this command to show configuration information of IGMP-snooping.

Example

The following example shows the vlan information of the running ipmp-snooping:

switch_config# show ip igmp-snooping

Global IGMP snooping configuration:

Globally enable	: Enabled
VLAN nodes	: 1,50,100,200,400,500
Dlf-frames filtering : [Disabled
Sensitive	: Disabled
Querier	: Enabled
Querier address	: 10.0.0.200
Querier interval	: 140 s

KYLAND

Router age	: 260 s		
Response ti	me : 15 s		
vlan_id	Immediate-leave	Ports	Router Ports
1	Disabled	5-10	SWITCH(querier);
50	Disabled	1-4	SWITCH(querier);
100	Disabled	NULL	. SWITCH(querier);G0/1(static);
200	Disabled	NULL	. SWITCH(querier);
400	Disabled	NULL	SWITCH(querier);
500	Disabled	NULL	SWITCH(querier);

switch_config#

23.1.1.21 show ip igmp-snooping timer

Syntax

show ip igmp-snooping timer

Parameter

None

Default

None

Usage Guidelines

Use this command to show timer information of IGMP.

Example

The following example shows timer information of igmp-snooping:

switch_config# show ip igmp-snooping timer

vlan 1 mrouter on port 3 : 251

switch_config#

23.1.1.22 show ip igmp-snooping groups

Syntax

show ip igmp-snooping groups

Parameter

None

Default

None

Usage Guidelines

Use this command to display multicast group information of IGMP-snooping.

Example

The following example shows the multicast group information of igmp-snooping:

switch_config# show ip igmp-snooping group

The tota	l numbe	er of grou	ips	2

Vlan Group	Type Port(s)	
1 226.1.1.1	IGMP G0/1	G0/3
1 225.1.1.16	IGMP G0/1	G0/3

switch_config#

23.1.1.23 show ip igmp-snooping group interface

Syntax

show ip igmp-snooping group interface

Parameter

None

Default

None

Usage Guidelines

Displays the IGMP-snooping multicast group information added on the port.

Example

The following example shows how to display the igmp-snooping multicast group information on port g0/4.

Switch#show ip igmp-snooping group interface g0/4
Number of joined groups: 1
Vlan Group Mode Source Num
---2 230.1.1.1 Exclude 0
Switch#

23.1.1.24 show ip igmp-snooping statistics

Syntax

show ip igmp-snooping statistics[message|packet|hardware|vlan vlanid]

Parameter

Parameter	Description
vlanid	When the command is followed by the optional keyword VLAN, it
	specifys the vlan ID.

Default

None

Usage Guidelines

Display IGMP-snooping statistics. The keywords messge, packet, hardware, VLAN are optional. With optional keywords, the message statistics, received packet statistics, hardware operation statistics, and sub-VLAN statistics of the IGMP-Snooping task are displayed separately. Without optional keywords, global messages, messages, and hardware operation statistics are displayed. When using a keyword VLAN, you need to specify Parametervlanid to display the statistics under the VLAN.

Example

The following example shows igmp-snooping statistics:

Switch#show ip igmp-snooping statistics

IGMP Snooping Message Statistics

L2 main messages sent OK	: 305
L2 main messages sent failed	: 0
L2 packets received	: 302
L2 packets sent	: 302
L2 packets sent failed	: 0
L2 link-status messages	: 3
IGMP Snooping messages receiv	ed: 313
IGMP packet messages received	: 302

IGMP Snooping Packet Statistics

Received packets	: 302
IGMP packets	: 259
M-routing protocol packets	: 0
Other packets	: 43
Received IGMP general queries	: 0
Received IGMPv2 specific queries	: 0
Received IGMPv3 g specific queries	: 0
Received IGMPv3 gs specific queries	:: 0
Received IGMPv1 reports	:0
Received IGMPv2 reports	: 230
Received IGMP leaves	: 0
Received IGMPv3 reports	: 29
Flooded queries	:0
Forwarded and proxy-sent reports	: 0
Forwarded and proxy-sent leaves	: 0

IGMP Snooping Hardware Operation Statistics

Total	: 9
Succeeded	: 9
Failed	: 0
Report/leave processing:	: 5
Response timer expiring:	4
Group creating/updating	;: 7
Group deleting	: 2

23.1.1.25 show ip igmp-snooping vlan

Syntax

show ip igmp-snooping vlan vlan-id

Parameter

Parameter	Description
vlan	1-4094

Default

None

Usage Guidelines

Display VLAN information of IGMP-snooping.

Example

The following example shows how to display the vlan information of igmp-snooping.

23.1.1.26 debug ip igmp-snooping packet

Syntax

debug ip igmp-snooping packet no debug ip igmp-snooping packet

Parameter

None

Default

None

Usage Guidelines

Use this command to enable/disable the packet debugging switch of IGMP-snooping.

Example

The followig command enables the packet debugging switch of igmp-snooping:

switch# debug ip igmp-snooping packet

switch#

23.1.1.27 debug ip igmp-snooping timer

Syntax

debug ip igmp-snooping timer no debug ip igmp-snooping timer

Parameter

None

Default

None

Usage Guidelines

Use this command to enable/disable the timer debugging switch of IGMP-snooping

Example

The following example enables timer debugging switch of igmp-snooping:

switch# debug ip igmp-snooping timer

switch#

23.1.1.28 debug ip igmp-snooping event

Syntax

debug ip igmp-snooping event no debug ip igmp-snooping event

Parameter

None

Default

None

Usage Guidelines

Use this command to enable/disable the event debugging switch of IGMP-snooping.

Example

The following example enable event debugging switch of igmp-snooping:

Switch#debug ip igmp-snooping event

Switch#

23.1.1.29 debug ip igmp-snooping error

Syntax

debug ip igmp-snooping error no debug ip igmp-snooping error

Parameter

None

Default

None

Usage Guidelines

Use this command to enable/disable the error debugging switch of IGMP-snooping.

Example

The following example shows how to enable error debugging switch of igmp-snooping:

Switch#debug ip igmp-snooping error

Switch#

23.1.1.30 debug ip igmp-snooping

Syntax

debug ip igmp-snooping no debug ip igmp-snooping

Parameter

None

Default

None

Usage Guidelines

Turn on/off all debugging switches of igmp-snnoping.

Example

The following example shows how to turn on all debugging switches of igmp-snooping.

Switch#debug ip igmp-snooping

IGMP-snooping packet debugging is on

IGMP-snooping timer debugging is on

IGMP-snooping event debugging is on

IGMP-snooping error debugging is on

Switch#

24 MLD-Snooping Configuration Commands

24.1 MLD Multicast Configuration Commands

24.1.1 MLD Multicast Configuration Commands

The MLD multicast configuration commands include:

- 1) ipv6 mld-snooping
- 2) ipv6 mld-snooping solicitation
- 3) **ipv6 mld-snooping vlan** *vlan_id* **static** *X:X:X::X* **interface** *intf*
- 4) **ipv6 mld-snooping timer router-age** *timer_value*
- 5) **ipv6 mld-snooping timer response-time** *timer_value*
- 6) **ipv6 mld-snooping vlan** *vlan_id* **mrouter interface** *inft_name*
- 7) **ipv6 mld-snooping vlan** *vlan_id* immediate-leave
- 8) show ipv6 mld-snooping
- 9) **show ipv6 mld-snooping vlan** *vlan_id*
- 10) show ipv6 mld-snooping timer
- 11) show ipv6 mld-snooping groups
- 12) show ipv6 mld-snooping statistics
- 13) show ipv6 mld-snooping mac

24.1.1.1 ipv6 mld-snooping

Syntax

ipv6 mld-snooping

no ipv6 mld-snooping

To enable MLD snooping, run **ipv6 mld-snooping**. To disable the MLD snooping, use the no form of the command.

Parameter

None

Default

This command is used to enable MLD snooping.

Usage Guidelines

After MLD snooping is enabled, when DLF occurs on multicast packets (that is, the destination address is not registered in the swap chip through the MLD-snooping), all multicast packets whose destination addresses are not registered on any port will be dropped.

Example

The following example shows how to enable the MLD snooping function:

switch_config# ipv6 mld-snooping

24.1.1.2 ipv6 mld-snooping solicitation

Syntax

ipv6 mld-snooping solicitation

no ipv6 mld-snooping solicitation

To enable or disable the hardware forwarding of the multicast group, run **ip mld-snooping solicitation**. To resume the default value, run **no ip mld-snooping solicitation**.

Parameter

None

Default

This function is shut down.

Usage Guidelines

None

Example

The following example shows how to enable the hardware forward of the multicast group.

switch_config#ipv6 mld-snooping solicitation

24.1.1.3 ipv6 mld-snooping vlan vlan_id static X:X:X:X:X interface intf_name

Syntax

ipv6 mld-snooping vlan vlan_id static X:X:X:X:X interface intf_name no ipv6 mld-snooping vlan vlan_id static X:X:X:X:X interface intf_name

Parameter

Parameter	Description
vlan id	Stands for the ID of a VLAN. Value range: 1-4094
X:X:X:X:X	IP address of the multicast
inft	An interface

Default

None

Usage Guidelines

This command is used to configure the static multicast address of VLAN. Its negative form is used to cancel the static multicast address.

Example

The following example shows how to add the static multicast address, ff12::5, to interface g1/1.

switch_config# ipv6 mld-snooping vlan 1 static ff12::5 interface g0/1

switch_config#

24.1.1.4 ipv6 mld-snooping timer router-age timer_value

Syntax

ipv6 mld-snooping timer router-age timer_value no ipv6 mld-snooping timer router-age

Parameter

Parameter				Des	criptio	n		
time value	Queries	the	time	of	the	timer.	Value	range:
	10-21474	18364	7					

Default

260 seconds

Usage Guidelines

This command is used to query the time of the timer of MLD-Snooping. The negative form of this command is used to resume the default value.

Example

The following example shows how to set the query time of the router to 300 seconds.

switch_config# ipv6 mld-snooping timer router-age 300

switch_config#

24.1.1.5 ipv6 mld-snooping timer response-time timer_value

Syntax

ipv6 mld-snooping timer response-time timer_value

no ipv6 mld-snooping timer response-time

To configure the maximum response time of IGMP snooping, run **ip mld-snooping timer response-time** *timer_value*. To resume the default value of IGMP snooping, run **no ip mld-snooping timer response-time** *timer_value*.

Parameter

Parameter				Des	criptio	n		
time value	Queries	the	time	of	the	timer.	Value	range:
	10-21474	18364	7					

Default

15 seconds

Usage Guidelines

None

Example

The following example shows how to set the query response time of IGMP snooping to 20 seconds.

switch_config# ipv6 mld-snooping timer response-time 20

24.1.1.6 ipv6 mld-snooping querier

Syntax

Ipv6 mld-snooping querier [address <ip_addr>]

no ipv6 mld-snooping querier [address]

To activate mld-snooping querier mechanism or set the source IP address of the query packet, run the first one of the above commands.

To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
ip_addr	Normal unicast IPv6 address

Default

Querier function is not disabled. The default source IP address is FE80::3FF:FEFE:FD00:1.

Usage Guidelines

None

Example

The following example shows how to activate IGMP querier and replace its work in condition of no multicast router.

switch_config# ipv6 mld-snooping querier

switch_config#

24.1.1.7 ipv6 mld-snooping vlan vlan_id mrouter interface inft_name

Syntax

ipv6 mld-snooping vlan vlan_id mrouter interface inft_name no ipv6 mld-snooping vlan vlan_id mrouter interface inft_name To set the static multicast router's port of MLD snooping, run the first one of the above-mentioned commands.

Parameter

Parameter	Description
vlan id	Stands for the ID of a VLAN. Value range: 1-4094
inft_name	Shows the port type, the slot and the port ID.

Default

None

Usage Guidelines

None

Example

The following example shows how to set interface G0/4 to be the interface of the static multicast router of MLD snooping.

switch_config# ipv6 mld-snooping vlan 1 mrouter interface g0/4

24.1.1.8 ipv6 mld-snooping vlan vlan_id immediate-leave

Syntax

ipv6 mld-snooping vlan vlan_id immediate-leave
no ipv6 mld-snooping vlan vlan_id immediate-leave

Parameter

Parameter	Description
vlan id	Stands for the ID of a VLAN. Value range: 1-4094

Default

The immediate-leave functionality is disabled.

Usage Guidelines

This command is used to set the immediate-leave functionality.

Example

The following example shows how to enable the immediate-leave functionality on VLAN 1:

switch_config# ipv6 mld-snooping vlan 1 immediate-leave

switch_config#

24.1.1.9 show ipv6 mld-snooping

Syntax

show ipv6 mld-snooping

Parameter

None

Default

None

Usage Guidelines

This command is used to display the information about MLD-snooping configuration.

Example

The following example shows how to display the information about MLD snooping.

switch#show ipv6 mld-snooping

Global MLD snooping configuration:

Globally enable	: Enabled
Querier	: Enabled
Querier address	: FE80::3FF:FEFE:FD00:1
Router age	: 260 s
Response time	: 10 s
Handle Solicitation	: Enabled

Vlan 1:

Running

Routers: SWITCH(querier);

Vlan 2:

Running

Routers: SWITCH(querier);

Switch_config#show ipv6 mld-s g

Vlan Group Type Port(s)

```
1 FF02::1:FF13:647D MLD G0/2

1 FF02::1:FF13:394 MLD G0/2

2 FF02::1:FF00:2 MLD G0/1

1 FF02::1:FF00:12 MLD G0/1

1 FF02::1:FF00:2 MLD G0/1

2 FF02::1:FF61:9901 MLD G0/2
```

switch#

24.1.1.10 show ipv6 mld-snooping vlan vlan_id

Syntax

show ipv6 mld-snooping vlan vlan_id

Parameter

Parameter	Description
vlan id	Stands for the ID of a VLAN. Value range: 1-4094

Default

None

Usage Guidelines

This command is used to display the concrete information about MLD-snooping of the specified vlan.

Example

The following example shows how to display the information about MLD snooping of the specified vlan.

switch#show ipv6 mld-snooping vlan 1

Vlan 1:

Running

Ports: g0/1 g0/2 g0/3 g0/4 g0/5 g0/6 g0/8 g0/9 g0/10 g0/11 g0/12 g0/13 g0/14 g0/16 g0/17 g0/18 g0/19 g0/20 g0/21 g0/22 g0/23 g0/24 Routers:

No querier, MLD snooping doesn't work on this vlan

24.1.1.11 show ipv6 mld-snooping timer

Syntax

show ipv6 mld-snooping timer

Parameter

None

Default

None

Usage Guidelines

This command is used to display the information about the MLD-snooping clock.

Example

The following example shows how to display the information about the MLD-snooping clock.

switch#show ipv6 mld-snooping timer

vlan 1 Querier on port 0 : 251

vlan 2 Querier on port 0 : 251

vlan 2 multicast address 3333.0000.0005 response time : 13

switch#

Querier on port 0: 251: This shows the switch router aging timer expires.

vlan 2 multicast address 3333.0000.0005 response time: This shows the time period from receiving a multicast query packet to the present; if there is no host to respond when the timer times out, the port will be canceled.

24.1.1.12 show ipv6 mld-snooping groups

Syntax

show ipv6 mld-snooping groups

Parameter

None

Default

None

Usage Guidelines

This command is used to display the information about the multicast group of MLD-snooping.

Example

The following example shows how to display the information about the multicast group of MLD-snooping.

switch# show ipv6 mld-snooping groups

Vlan Group Type Port(s)

---- ------

- 2 FF02::1:FF00:2 MLD G0/2
- 2 FF02::1:FF61:9901 MLD G0/2
- 1 FF02::1:FF13:394 MLD G0/1
- 1 FF02::1:FF00:2 MLD G0/1
- 1 FF02::1:FF00:12 MLD G0/1
- 1 FF02::1:FF13:647D MLD G0/2

switch#

24.1.1.13 show ipv6 mld-snooping statistics

Syntax

show ipv6 mld-snooping statistics

Parameter

None

Default

None

Usage Guidelines

This command is used to display the information about MLD-snooping statistics.

Example

The following example shows how to display the information about MLD-snooping statistics.

switch#show ipv6 mld-snooping statistics			
v1_packets:0	Quantity	of MLD v1 packets	
v2_packets:6	Quanti	ity of MLD v2 packets	
general_query_packets:5 Quantity of general query packet			
special_query_packets:0		Quantity of special query packets	
listener_packets:6	Quan	itity of Report packets	

done_packets:0 Quantity of Leave packets

send_query_packets:0 Send the packets quantity of Query

err_packets:0 Quantity of error packets

24.1.1.14 show ipv6 mld-snooping mac

Syntax

show ipv6 mld-snooping mac

Parameter

None

Default

None

Usage Guidelines

This command is used to display the multicast MAC of MLD snooping.

Example

The following example shows how to display the multicast MAC of MLD snooping.

switch#show ipv6 mld-snooping mac Vlan Mac **Ref Flags** ---- -----1 3333:0000:0001 1 2 2 3333:ff61:9901 1 0 FF02::1:FF61:9901 1 3333:0000:0002 1 2 1 3333:ff00:0002 1 0 FF02::1:FF00:2 1 3333:ff00:0012 1 0 FF02::1:FF00:12 1 3333:ff13:647d 1 0 FF02::1:FF13:647D 2 3333:ff00:0002 1 0 FF02::1:FF00:2

1 3333:ff13:0394 1 0 FF02::1:FF13:394 1 3333:ff00:0001 1 2 1 3333:ff8e:7000 1 2

switch#

Ref means the quantity of referred IPv6 addresses of MAC.

Flags means the debug output information, and 2 means the information need be sent to CPU.

25 **OAM Configuration Commands**

25.1 OAM Configuration Commands

25.1.1 OAM Configuration Commands

The following are OAM configuration commands:

- ethernet oam
- ethernet oam {max-rate | min-rate | mode | timeout }
- ethernet oam remote-failure {critical-event | dying-gasp | link-fault } action
- ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} threshold high
- ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} threshold low
- ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} window
- ethernet oam link-monitor high-threshold action
- ethernet oam link-monitor negotiation-supported

25.1.1.1 ethernet oam

Syntax

[no] ethernet oam

To enable or disable the OAM function, run [no] ethernet oam.

Parameter

None

Default

Ethernet OAM is disabled by default.

Command Mode

Port configuration mode

Usage Guidelines

None

Example

The following commands are used to enable the OAM function on GigaEthernet 0/2 interface.

Switch#

Switch#config

Switch_config#interface g0/2

Switch_config_g0/2#ethernet oam

25.1.1.2 ethernet oam {max-rate | min-rate | mode | timeout }

Syntax

[no] ethernet oam {max-rate value1 | min-rate value2 | mode {active | passive} | timeout value3} ethernet oam max-rate value1 is used to set the fastest transmission rate of the OAM packet. ethernet oam max-rate value2 is used to set the slowest transmission rate of the OAM packet. ethernet oam mode {active | passive} is used to set the OAM mode. ethernet oam timeout value3 is used to set the timeout time of the OAM connection.

Parameter

Parameter	Description
value1	Fastest transmission rate, which ranges between 1 and
	10. Its unit is packet/second.
value2	Slowest transmission rate, which ranges between 1 and
	10. Its unit is second.
value3	Timeout time of the OAM connection, which ranges
	between 2 and 30 and whose unit is second

Default

The value of **max-rate** is 10. The value of **min-rate** is 1. The value of **timeout** is 5. The value of **mode** is **active**.

Command Mode

Port configuration mode

Usage Guidelines

This command can be used to configure some optional parameters for establishing the OAM connection.

Example

The following example shows how to set the fastest and slowest connection rates of the OAM on the GigaEthernet 0/2 interface to 5 packets/second, the connection timeout time to 10 seconds and the OAM mode to **passive**.

Switch #config

Switch_config#

Switch_config#interface g0/2

Switch_config_g0/2# ethernet oam max-rate 5

Switch_config_g0/2#ethernet oam min-rate 5

Switch_config_g0/2#ethernet oam timeout 10

Switch_config_g0/2#ethernet oam mode passive

25.1.1.3 ethernet oam remote-failure {critical-event | dying-gasp | link-fault } action

Syntax

ethernet oam remote-failure {critical-event | dying-gasp | link-fault } action error-disable-interface

no ethernet oam remote-failure {critical-event | dying-gasp | link-fault } action

This command is used to configure the trigger action after the remote fault instruction is received.

Parameter

None

Default

No trigger action is conducted after the remote fault instruction is received.

Command Mode

Port configuration mode

Usage Guidelines

The switch cannot generate the LINK FAULT packets and the Critical Event packets. However, these packets will be handled if they are received from the remote terminal. Router can transmit and receive the Dying Gasp packet. When the local port enters the **errdisabled** state or is closed by the administrator or the OAM function of the local port is closed by the manager, the Dying Gasp packet will be transmitted to the remote terminal that connects the local port.

Example

The following example shows how to enable action error-disable-interface after receiving remote link fault instruction in the GigaEthernet0/1:

Switch_config#interface g0/1

Switch_config_g0/1#ethernet oam remote-failure link-fault action error-disable-interface

25.1.1.4 ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} threshold high

Syntax

[no] ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} threshold high {none | *value*}

To configure the high threshold for link monitoring, run the previous command.

Parameter

Parameter	Description
Value	Error-signal period event ranges between 1 and 65535,
	whose unit is signal number.
	Error-frame event ranges between 1 and 65535, whose
	unit is frame number.
	Error-frame event ranges between 1 and 65535, whose
	unit is frame number.
	Error-frame second event ranges between 1 and 900,
	whose unit is second.
	Error-CRC event ranges between 1 and 65535, whose
	unit is frame number.

Default

The default value of each general link event is **none**.

Command Mode

Port configuration mode

Usage Guidelines

After the high threshold of an event and **ethernet oam link-monitor high-threshold action error-disable-interface** are configured, the local port enters the **errdisabled** state when the local port receives the high threshold of the event.

Example

The following example shows how to configure the high threshold of the error-frame event to **10** on interface GigaEthernet0/2.

Switch_config_g0/2#ethernet oam link-monitor symbol-period threshold high 10

25.1.1.5 ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} threshold low

Syntax

[no] ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} threshold low {none | *value*}

To configure the low threshold for link monitoring, run the previous command.

Parameter

Parameter	Description
Value	Error-signal period events ranges between 1 and 65535,
	whose unit is signal number.
	Error-frame event ranges between 1 and 65535, whose
	unit is frame number.
	Error-frame event ranges between 1 and 65535, whose
	unit is frame number.
	Error-frame second event ranges between 1 and 900,
	whose unit is second.
	Error-CRC event ranges between 1 and 65535, whose
	unit is frame number.

Default

The default value of the error-signal period event is 1. The default value of the error-frame event is 1. The default value of the error-frame period event is 1. The default value of the error-frame second event is 1. The default value of the error-CRC event is 10.

Command Mode

Port configuration mode

Usage Guidelines

After the low threshold of an event is configured and the locally-received event exceeds the low threshold, the Event Notification OAM packet will be transmitted to notify the peer terminal.

Example

The following example shows how to set the low threshold of the error-frame event to 10 on interface

GigaEthernet0/2.

Switch_config_g0/2#ethernet oam link-monitor symbol-period threshold low 10

25.1.1.6 ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} window

Syntax

ethernet oam link-monitor {symbol-period | frame | frame-period | frame-seconds | receive-crc} window value To configure the size of the round-query window for link monitoring, run the previous command.

Parameter

Parameter	Description
Value	The error-signal period event ranges between 10 and
	600 on GigaEthernet and ranges between 1 and 60 on
	FastEthernet. The unit is 100M signals.
	The error-frame event ranges between 1 and 60, whose
	unit is second.
	The error-frame period event ranges between 100 and
	6000 on GigaEthernet and ranges between 10 and 600
	on FastEthernet. The unit is 14881 frames.
	Error-frame second event ranges between 10 and 900,
	whose unit is second.
	The error-CRC event ranges between 1 and 180, whose
	unit is second.

Default

The default value of the error-signal period event is 10 on GigaEthernet and is 1 on FastEthernet. The default value of the error-frame event is 1.

The default value of the error-frame period event is 100 on GigaEthernet and is 10 on FastEthernet.

The default value of the error-frame second event is 60.

The default value of the error-CRC event is 1.

Command Mode

Port configuration mode

Usage Guidelines

Example

The following example shows how to set the window of the error-frame period event to **50** on interface GigaEthernet0/2.

Switch_config_g0/2#ethernet oam link-monitor symbol-period window 50

25.1.1.7 ethernet oam link-monitor high-threshold action

Syntax

ethernet oam link-monitor high-threshold action error-disable-interface

[no] ethernet oam link-monitor high-threshold action

To configure the link-monitor trigger event with the high threshold, run **ethernet oam link-monitor high-threshold action error-disable-interface**.

Parameter

None

Default

The high-threshold trigger event does not exist by default.

Command Mode

Port configuration mode

Usage Guidelines

After the high threshold of an event and **ethernet oam link-monitor high-threshold action error-disable-interface** are configured, the local port enters the **errdisabled** state when the local port receives the high threshold of the event.

Example

The following example shows how to set the high-threshold trigger event on interface GigaEthernet 0/2 to error-disable-interface.

Switch_config_g0/2#ethernet oam link-monitor high-threshold action error-disable-interface

25.1.1.8 ethernet oam link-monitor negotiation-supported

Syntax

[no] ethernet oam link-monitor negotiation-supported

To configure the link-monitor negotiation, run ethernet oam link-monitor negotiation-supported.

Parameter

None

Default

Link-monitor negotiation is supported.

Command Mode

Port configuration mode

Usage Guidelines

Devices support link monitoring. However, if the third-party devices do not support link monitoring, devices automatically do not support link monitoring during OAM Discovery and the OAM connection can be established through the third-party devices in this case. Otherwise, when the link-monitor negotiation is not configured, devices mandatorily support the link-monitor function, but the OAM connection cannot be created if the third-party devices do not support the link-monitor function.

Example

The following example shows that the link-monitor function is not supported on interface GigaEthernet 0/2.

Switch_config_g0/2#no ethernet oam link-monitor negotiation-supported

25.1.1.9 clear ethernet oam statistics

Syntax

clear ethernet oam statistics [interface intf-type intf-id]

To clear the OAM statistics information, run the previous command.

Parameter

Parameter	Description
intf-id	Designates an interface. If an interface is not designated,
	the OAM statistics information on all interfaces will be
	deleted.

Default

None

Command Mode

Privileged mode

Usage Guidelines

After this command is run, the following statistics information (type-classified packet numbering information, link-event statistics information and remote trouble statistics information) is deleted meanwhile.

Example

The following example shows how to clear the OAM statistics information on interface GigaEthernet 0/2.

Switch#clear ethernet oam statistics interface g0/2

25.1.1.10 show ethernet oam discovery

Syntax

show ethernet oam discovery interface [intf-type intf-id]

To display the OAM discovery information on all interfaces or a designated interface, run the previous command.

Parameter

Parameter	Description
intf-id	Displays the Discovery information on the designated interface or on all protocol-up ports and enables the
	Discovery information on the OAM interface.

Default

None

Usage Guidelines

None

Example

The following example shows how to display the OAM discovery information on interface GigaEthernet 0/2.

Switch_config_g0/2#show ethernet oam discovery interface g0/2

GigaEthernet0/2

Local Info TLV

PDU revision: 1

Loopback status: LB_DISABLED

OAM configurations field:

Mode	: active		
Unidirection	: not supported		
Remote loopback	: supported		
Link Events	: supported		
Variable retrieval: not supported			
Mtu size:	1500		
OUI:	00e00f		
Remote Info TLV			
MAC address:	001b.0d9c.e703		
PDU revision:	0		
OAM configurations field:			
Mode	: active		
Unidirection	: not supported		
Remote loopback	: not supported		
Link Events	: supported		
Variable retrieval:	not supported		

Mtu size: 1500

OUI:

00000c

25.1.1.11 show ethernet oam statistics {pdu | link-monitor | remote-failure}

Syntax

show ethernet oam statistics {pdu | link-monitor | remote-failure} interface [intf-type intf-id]

To display the OAM statistics information on a designated interface or all interfaces, run the previous command.

Parameter

Parameter	Description
intf-id	Displays the statistics information on the designated interface or on all protocol-up ports and enables the
	statistics information on the OAM interface.

Default

None

Usage Guidelines

None

Example

The following example shows how to display the classified OAM packet numbering information on interface GigaEthernet 0/2.

Switch#show ethernet oam statistics pdu interface g0/2

GigaEthernet0/2

Counters:

Information OAMPDU Tx	: 59	
Information OAMPDU Rx	: 56	
Unique Event Notification OAMPDU Tx	:0	
Unique Event Notification OAMPDU Rx	: 0	
Duplicate Event Notification OAMPDU TX: 0		
Duplicate Event Notification OAMPDU RX: 0		
Loopback Control OAMPDU Tx	: 0	
Loopback Control OAMPDU Rx	: 0	
Variable Request OAMPDU Tx	: 0	
Variable Request OAMPDU Rx	: 0	
Variable Response OAMPDU Tx	:0	
Variable Response OAMPDU Rx	: 0	
Organization Specific OAMPDU Tx	: 0	

Organization Specific OAMPDU Rx	: 0
Unsupported OAMPDU Tx	: 0
Unsupported OAMPDU Rx	: 0
Frames Lost due to OAM	: 0

25.1.1.12 show ethernet oam configuration

Syntax

show ethernet oam configuration interface [intf-type intf-id]

To display the OAM configuration information on all interfaces or a designated interface, run **show ethernet oam configuration interface [intf-type intf-id]**.

Parameter

Parameter	Description
intf-id	Displays the OAM configuration information on the
	designated interface or on all protocol-up ports and enables the configuration information on the OAM
	interface.

Default

None

Usage Guidelines

None

Example

The following example shows how to display the OAM configuration information on interface GigaEthernet 0/2.

Switch#show ethernet oam configuration interface g0/2

: 1 seconds

GigaEthernet0/2

General

Link timeout

Admin state	: enabled
Mode	: active
PDU max rate	: 10 packets/second
PDU min rate	: 1 seconds/packet

High threshold action: no action

Remote Failure

- Link fault action : no action
- Dying gasp action : no action
- Critical event action: no action

Remote Loopback

Is supported	: supported
is supported	. supported

Loopback timeout : 2

Link Monitoring

Negotiation	: supported
Status	: on

Errored Symbol Period Event

Window	: 10 * 100M symbols
Low threshold	: 1 error symbol(s)
High threshold	: none

Errored Frame Event

Window : 1 seconds	
Low threshold	: 1 error frame(s)
High threshold	: none

Errored Frame Period Event

Window	: 100 * 14881 frames
Low threshold	: 1 error frame(s)
High threshold	: none

Errored Frame Seconds Summary Event

Window : 60 seconds	
Low threshold	: 1 error second(s)
High threshold	: none

Errored CRC Frames Event

Window	: 1 seconds
Low threshold	: 10 error frame(s)
High threshold	: none

25.1.1.13 show ethernet oam runtime

Syntax

show ethernet oam runtime interface [intf-type intf-id]

To display the OAM running information on all interfaces or a designated interface, run the previous command.

Parameter

Parameter	Description
intf-id	Displays the Runtime information on the designated interface or on all protocol-up ports and enables the Runtime information on the OAM interface.

Default

None

Usage Guidelines

None

Example

The following example shows how to display the OAM Runtime information on interface GigaEthernet 0/2.

Switch#show ethernet oam runtime interface g0/2

GigaEthernet0/2

Runtime Settings:

KYLAND

local_pdu : NOT_WORKING

: FWD

: 10

local_mux : FWD

local_par : | local_link_status : OK

local_satisfied : FALSE

local_stable : FALSE

-

pdu_cnt

pdu_timer : stopped

lost_link_timer : stopped

remote_state_valid: FALSE

remote_stable : FALSE

remote_evaluating : FALSE

Discovery State Machine:

Last 10 state transition recorded: INACTIVE -> FAULT -> ACTIVE_SEND_LOCAL -> SEN

D_LOCAL_REMOTE -> SEND_LOCAL_REMOTE_OK -> SEND_ANY -> INACTIVE

26 **CFM and Y1731 Configuration Commands**

26.1 Overview

26.1.1 Stipulation

26.1.1.1 Format Stipulation in the Command Line

Syntax	Meaning
Bold	Stands for the keyword in the command line, which stays unchanged and must be entered
	without any modification. It is presented as a bold in the command line.
{italic}	Stands for the parameter in the command line, which must be replaced by the actual value.
	It must be presented by the italic in the brace.
<italic></italic>	Stands for the parameter in the command line, which must be replaced by the actual value.
	It must be presented by the italic in the point bracket.
[]	Stands for the optional parameter, which is in the square bracket.
{ x y }	Means that you can choose one option from two or more options.
[x y]	Means that you can choose one option or none from two or more options.
{ x y } *	Means that you has to choose at least one option from two or more options, or even choose
	all options.
[x y]*	Means that you can choose multiple options or none from two or more options.
&<1-n>	Means that the parameter before the "&" symbol can be entered 1~n times.
#	Means that the line starting with the "#" symbol is an explanation line.

26.2 **CFM**

26.2.1 CFM Configuration Commands

26.2.1.1 Adding the Maintenance Domain and Entering the Maintenance Domain Mode

Syntax

To add a maintenance domain or enter the already existent maintenance domain, run the following command.

ethernet cfm md mdnf {string} <char_string> [level <0-7> / creation <MHF_creation_type> / sit
<sender_id_type> / ip <IP_address>]

Parameters

Parameters	Description
mdnf	Stands for the format of the name of the maintenance domain. At present only
	the char-string format is supported.
	<char_string> name of the maintenance domain. It is in character string format</char_string>
	with 1 to 42 printable characters and all characters should be capital sensitive.
level	(optional parameter) Stands for the level of a maintenance domain. It is 0 by
	default.
creation	It is none by default.
sit	It is none by default.
ір	(optional parameter) Stands for the IP address reported by the trouble alarm.
	It is 0.0.0.0 by default.

Command Mode

Global configuration mode

Example

Switch_config#ethernet cfm md mdnf string customer level 5

Related Command

None

26.2.1.2 Deleting the Maintenance Domain

Syntax

To delete a designated maintenance domain, run the following command.

no ethernet cfm md mdnf {string} <char_string>

Parameters

Parameters	Description
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported. It is in character string format with 1 to 42 printable

characters and all characters should be capital sensitive.

Command Mode

Global configuration mode

Example

Switch_config#no ethernet cfm md mdnf string customer

Related Command

None

26.2.1.3 Browsing the Maintenance Domain

Syntax

To browse all the maintenance domains or the designated maintenance domains of the local device, run the following

command.

```
show ethernet cfm md [mdnf {string} <char_string>]
```

Parameters

Parameters	Description
mdnf	Stands for the format of the name of a to-be-browsed designated maintenance
	domain. At present only the char-string format is supported. <char_string> name of</char_string>
	the maintenance domain. It is in character string format with 1 to 42 printable
	characters and all characters should be capital sensitive.

Command Mode

EXEC, global, interface, maintenance domain

Example

Switch_config#show ethernet cfm md mdnf string customer

Related Command

26.2.1.4 Adding a Maintenance Association

Syntax

To add a maintenance association, run the following command.

ma manf {string} <char_string> [ci {100ms | 1s | 10s | 1min | 10min} meps <mepids> vlan <1-4094> | creation <MHF_creation_type> | sit <sender_id_type> | ip <IP_address>]

Parameters

Parameters	Description
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> name of the maintenance association. It is in character string mode.</char_string>
ci	Stands for the transmission interval of CCM. The shortest transmission interval
	which is supported presently is 100ms.
meps	Stands for the MEPID of all MEPs in the local maintenance domain.
vlan	(optional parameter) Stands for the identifier of the VLAN where the maintenance
	association is located. It is 1 by default.
creation	(optional parameter) MIP It is none by default.
sit	(optional parameter) Stands for the identifier type of the sender. It is none by default.
ір	(optional parameter) Stands for the IP address reported by the trouble alarm. It is 0.0.0.0 by
	default.

Command Mode

Maintenance domain mode

Example

Switch_config_cfm#ma manf string customer1 ci 1s meps 1-2,2009 vlan 10

Related Command

26.2.1.5 Deleting the Maintenance Association

Syntax

To delete a designated maintenance association, run the following command.

no ma manf {string} <char_string>

Parameters

Parameters	Description
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<i><char_string></char_string></i> name of the maintenance association. It is in character string mode.

Command Mode

Maintenance domain mode

Example

Switch_config_cfm#no ma manf string customer

Related Command

None

26.2.1.6 Browsing the Maintenance Association

Syntax

To browse all or designated maintenance associations in a designated maintenance domain on the local device, run the

following command.

show ethernet cfm ma mdnf {string} <char_string> [manf {string} <char_string>]

Parameters

Parameters	Description
mdnf	Stands for the format of the name of the maintenance domain where the to-be-browsed
	maintenance association is located. At present only the char-string format is supported.
	<char_string> the name of the maintenance domain where the to-be-browsed maintenance</char_string>
	association is located. It is in character string format with 1 to 42 printable characters and all

	characters should be capital sensitive.
manf	Stands for the format of the name of a to-be-browsed maintenance association. At present
	only the char-string format is supported.
	<char_string> the name of a to-be-browsed maintenance association. It is in character string</char_string>
	mode.

Command Mode

EXEC, global, interface, maintenance domain

Example

Switch_config#show ethernet cfm ma mdnf string customer manf string customer1

Related Command

None

26.2.1.7 Adding MIP

Syntax

To add an MIP of a specific level, which belongs to a designated VLAN, on a specific interface, run the following command.

ethernet cfm mip add level <0-7> [vlan <1-4094>]

Parameters

Parameters	Description
level	Stands for the level of a maintenance domain.
vlan	Stands for the identifier of the VLAN where the maintenance association is located. It is 1
	by default.

Command Mode

Physical interface configuration mode

Example

Switch_config_g0/1#ethernet cfm mip add level 1 vlan 10

Related Command

26.2.1.8 Deleting MIP

Syntax

To delete a designated MIP, run the following command.

ethernet cfm mip del vlan <1-4094>

Parameters

Parameters	Description
vlan	Stands for the identifier of the VLAN where MIP is located.

Command Mode

Interface configuration mode

Example

Switch_config_g0/1#ethernet cfm mip del vlan 10

Related Command

None

26.2.1.9 Browsing MIP

[Method 1]

Syntax

To browse all MIPs of a designated interface in the local device or MIPs in a specific VLAN, run the following command.

show ethernet cfm mip vlan <1-4094> interface <interface_name>

show ethernet cfm mip interface <interface_name>

Parameters

Parameters	Description
interface	Stands for a to-be-browsed interface.
vlan	Stands for the identifier of a to-be-browsed VLAN.

Command Mode

EXEC, global, interface, maintenance domain

Example

Switch_config#show ethernet cfm mip vlan 1 interface g0/1

Related Command

None

[Method 2]

Syntax

To browse all MIPs on the current interface of the local device, run the following command.

ethernet cfm mip display

Parameters

None

Command Mode

Physical interface mode

Example

Switch_config_g0/1#ethernet cfm mip display

Related Command

None

26.2.1.10 Adding MEP

Syntax

To add an MEP, which belongs to a designated maintenance association, on a specific interface, run the following

command.

ethernet cfm mep add mdnf {string} <char_string> manf {string} <char_string> mepid <1-8191> rmepid <1-8191> [direction {up | down} | ip <ip_address> | lap {all | mac | rCCM | eCCM | xcon | none}]

Parameters

Parameters	Description
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported.
	<pre><char_string> the name of the maintenance domain. It is in character string format</char_string></pre>
	with 1 to 42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance association. It is in character string format with</char_string>
	1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the to-be-added MEP.
rmepid	Stands for the designated remote MEPID of the to-be-added MEP.
direction	(optional parameter) Stands for the direction of the to-be-added MEP. It is down by default.
ір	(optional parameter) Stands for the IP address reported by the trouble alarm. It is 0.0.0.0 by
	default.
lap	(optional parameter) Stands for the lowest priority of trouble report. It is all by default.

Command Mode

Physical interface configuration mode

Example

Switch_config_g0/1#ethernet cfm mep add mdnf string customer manf string customer1 mepid 2009 rmepid 2008 direction

up lap all

Related Command

None

26.2.1.11 Deleting MEP

Syntax

To delete a designated MEP, run the following command.

ethernet cfm mep del mdnf {string} <char_string> manf {string} <char_string> mepid <1-8191>

Parameters

Parameters	Description
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance domain. It is in character string format</char_string>
	with 1 to 42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance association. It is in character string format</char_string>
	with 1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the to-be-removed MEP.

Command Mode

Physical interface configuration mode

Example

Switch_config_g0/1#ethernet cfm mep del mdnf string customer manf string customer1 mepid 2009

Related Command

None

26.2.1.12 Browsing MEP

[Method 1]

Syntax

To browse the detailed or brief information about all MEPs in the designated maintenance domain of the local device, or that about a specific MEP, run the following command.

show ethernet cfm mep mdnf {string} <char_string> manf {string} <char_string> [mepid <1-8191>] [view
{detail | brief}]

Parameters

Parameters	Description
mdnf	Stands for the format of the name of the maintenance domain. At present only the char-string format is supported.

	<pre><char_string> the name of the maintenance domain. It is in character string format with 1 to</char_string></pre>
	42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported. It is in character string format with 1 to 42 printable
	characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the to-be-browsed MEP.
view	Means to browse the detailed information or the brief information. It is the detailed
	information that will be browsed by default.

Command Mode

EXEC, global, interface, maintenance domain

Example

Switch_config#show ethernet cfm mep mdnf string x manf string x view brief

Related Command

None

[Method 2]

Syntax

To browse all MEPs on the current interface of the local device, run the following command.

ethernet cfm mep display

Parameters

None

Command Mode

Physical interface mode

Example

Switch_config_g0/1#ethernet cfm mep display

Related Command

26.2.2 CFM Maintenance Commands

26.2.2.1 Loopback

Syntax

To use a designated MEP at the local terminal to conduct loopback towards another designated MEP at the remote terminal, run the following command.

ethernet cfm loopback mdnf {string} <char_string> manf {string} <char_string> mepid <1-8191> mac <AA:BB:CC:DD:EE:FF> [number <1-64>]

Parameters

Parameter	Description
s	
mdnf	Stands for the format of the name of the maintenance domain. At present only the char-string format is supported.
	<char_string> the name of the maintenance domain. It is in character string format</char_string>
	with 1 to 42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance association. It is in character string format with</char_string>
	1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the local MEP.
mac	Stands for the MAC address of the remote MEP.
number	(optional parameter) Stands for the times of conducting loopback. It is 3 by default.

Command Mode

EXEC

Example

Switch#ethernet cfm loopback mdnf string x manf string x mepid 1 mac 00:15:E9:43:AD:E3 number 3

Related Command

26.2.2.2 Linktrace

Syntax

To use a designated local MEP to conduct linktrace towards a designated remote MEP, run the following command.

ethernet cfm linktrace mdnf {string} <char_string> manf {string} <char_string> mepid <1-8191> mac <AA:BB:CC:DD:EE:FF> [ttl {1-255} / fdb-only {yes}]

Parameters

Parameter	Description
s	
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported.
	<i><char_string></char_string></i> the name of the maintenance domain. It is in character string format with 1
	to 42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<i><char_string></char_string></i> the name of the maintenance association. It is in character string format
	with 1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the local MEP.
mac	Stands for the MAC address of the remote MEP.
ttl	(optional parameter) Stands for the tt1 value. It is 64 by default.
fdb-only	It is yes by default.

Command Mode

EXEC

Example

Switch#ethernet cfm linktrace mdnf s x manf string x mepid 1 mac 00:15:E9:43:AD:E3 ttl 64

Related Command

None

26.2.2.3 Deleting the Linktrace Result Table

Syntax

To delete the linktrace result table of a designated MEP, run the following command.

clear ethernet cfm linktrace mdnf {string} <char_string> manf {string} <char_string> [mepid <1-8191>]

Parameters

Parameter	Description
S	
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance domain. It is in character string format with 1 to</char_string>
	42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance association. It is in character string format with</char_string>
	1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the local MEP.

Command Mode

EXEC

Example

Switch#clear ethernet cfm linktrace mdnf string x manf string x mepid 1

Related Command

None

26.2.2.4 Setting the Size of the Linktrace Result Table

Syntax

To set the size of the linktrace result table (that is, the number of linktraces which can be conducted concurrently), run the

following command.

ethernet cfm linktrace table-size <1-16>

Parameters

Parameters	Description
table-size	Stands for the size of the linktrace result table.

Command Mode

Global configuration mode

Example

Switch_config#ethernet cfm linktrace table-size 1

Related Command

None

26.2.2.5 Setting the Number of Entries in the Linktrace Result Table

Syntax

To set the maximum number of entries that are received each time by the linktrace result table, run the following

command.

ethernet cfm linktrace entry-number <2-4095>

Parameters

Parameters	Description
entry-number	Stands for the number of the entries in the linktrace result table.

Command Mode

Global configuration mode

Example

Switch_config#ethernet cfm linktrace entry-number 2009

Related Command

None

26.2.2.6 Setting the Aging Time of the Linktrace Result Table

Syntax

To set the maximum number of entries that are received each time by the linktrace result table(Unit:min), run the following

command.

ethernet cfm linktrace hold-time <1-29>

Parameters

Parameters	Description
hold-time	Stands for the aging time of the linktrace result table. Unit: minute

Command Mode

Global configuration mode

Example

Switch_config#ethernet cfm linktrace hold-time 10

Related Command

None

26.2.2.7 Deleting the MEP Statistics Data

Syntax

To delete the statistics data of a designated MEP, run the following command.

ethernet cfm mep clear mdnf {string} <char_string> manf {string} <char_string> mepid <1-8191>

Parameters

Parameters	Description
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance domain. It is in character string format</char_string>
	with 1 to 42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance association. It is in character string format</char_string>
	with 1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of a designated MEP.

Command Mode

Physical interface mode

Example

Switch_config_g0/1#ethernet cfm mep clear mdnf string x manf string x mepid 1

Related Command

None

26.2.3 CFM Control Commands

26.2.3.1 CFM Stack Control Command

Syntax

ethernet cfm {enable | disable}

To enable or disable the whole CFM protocol stack, run the followingcommand.

Parameters

None

Command Mode

Global configuration mode

Example

Switch_config#ethernet cfm enable

Related Command

None

26.2.3.2 CFM Interface Control Command

Syntax

To enable or disable the CFM function of the current interface, run the following command.

ethernet cfm {enable | disable}

Parameters

None

Command Mode

Physical interface mode

Example

Switch_config_g0/1#ethernet cfm enable

Related Command

None

26.2.3.3 MIP Control Command

Syntax

To enable or disable the MIP of a designated VLAN on the current interface, run the following command.

ethernet cfm mip {enable | disable} vlan <1-4094>

Parameters

None

Command Mode

Physical interface mode

Example

Switch_config_g0/1#ethernet cfm mip enable vlan 1

Related Command

26.2.4 CFM Query Commands

26.2.4.1 Browsing the CFM Protocol Stack

Syntax

To browse the CFM protocol stack, run the following command.

show ethernet cfm stack

Parameters

None

Command Mode

Non-user mode

Example

Switch_config#show ethernet cfm stack

Related Command

None

26.2.4.2 Browsing the CFM Interface

Syntax

The command is used to check the relevant information of CFM interface.

show ethernet cfm interface [<interface_name>]

Parameters

None

Command Mode

Non-user mode

Example

Switch_config#show ethernet cfm interface g0/1

Related Command

None

26.2.4.3 Browsing the Locally Stored Information about the Remote MEP

Syntax

To browse the detailed or brief information about all remote MEPs, which together with a designated local MEP belong to

the same maintenance association, or about a designated remote MEP, run the following command.

show ethernet cfm rmep mdnf {string} <char_string> manf {string} <char_string> [mepid <1-8191>] [rmepid
<1-8191>] [view {detail | brief}]

Parameters

Parameter	Description
S	
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance domain. It is in character string format with 1 to</char_string>
	42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance association. It is in character string format with</char_string>
	1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the local MEP, which together with the to-be-browsed remote
	MEP belongs to the same maintenance association.
rmepid	Stands for the MEPID of the to-be-browsed remote MEP.
view	Means to browse the detailed information or the brief information. It is the detailed
	information that will be browsed by default.

Command Mode

Non-user mode

Example

Switch_config#show ethernet cfm rmep mdnf string x manf string x mepid 1 rmepid 2 view brief

Related Command

None

26.2.4.4 Browsing the LinkTrace Result Table

Syntax

To browse the linktrace result table which is carried out by a specified TID of a specific MEP, run the following command.

show ethernet cfm linktrace mdnf {string} <char_string> manf {string} <char_string> mepid <1-8191> tid

<0-4294967295>

Parameters

Parameter	Description
s	
mdnf	Stands for the format of the name of the maintenance domain. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance domain. It is in character string format with 1 to</char_string>
	42 printable characters and all characters should be capital sensitive.
manf	Stands for the format of the name of the maintenance association. At present only the
	char-string format is supported.
	<char_string> the name of the maintenance association. It is in character string format with</char_string>
	1 to 42 printable characters and all characters should be capital sensitive.
mepid	Stands for the MEPID of the local MEP, which together with the to-be-browsed remote
	MEP belongs to the same maintenance association.
tid	Stands for the TID that is returned during linktrace.

Command Mode

Non-user mode

Example

Switch_config#show ethernet cfm linktrace mdnf string x manf string x mepid 1 tid 19830719

order:1[Order ID of this LTR]
TTL:3[TTL vlaue in the responsed LTRs]
FwdYes:NO[Whether the local node forwards LTM]
TerminalMEP:NO[Whether the local node is the terminal MEP]
Last Egress ID:0 - 00:E0:0F:DC:02:11[MAC of the previous hop]
Next Egress ID:0 - 00:00:00:00:00:00[MAC of the next hop, and if the result is 0 it means there
is no next hop]
Relay Action:(1)HIT[Field of the Relay action: HIT means just hitting successively]
Ingress Action:OK(1)[state of the ingress port: OK]
Ingress MAC Address:00:E0:0F:81:11:1C[MAC of the ingress port]
Ingress Port ID format:MAC-ADDRESS(3)[ID format of the ingress port: MAC format]
Ingress Port ID (hex):00 E0 0F 81 11 1C[Identifier of the ingress port: 00 E0 0F 81 11 1C]

Related Command

None

26.2.4.5 Browsing the Whole Running Status of CFM

Syntax

To browse the whole running status of CFM, run the following command.

show ethernet cfm running-info

Parameters

None

Command Mode

Non-user mode

Example

Switch_config#show ethernet cfm running-info

Related Command

27 DHCP-Snooping Configuration Commands

27.1 DHCP-Relay Snooping Configuration Commands

27.1.1 DHCP-Relay Snooping Commands

The DHCP-relay snooping configuration commands include:

- <u>ip dhcp-relay snooping</u>
- ip dhcp-relay snooping vlan
- ip dhcp-relay snooping database-agent
- ip dhcp-relay snooping db-file
- <u>ip verify source vlan</u>
- ip arp inspection vlan
- <u>ip source binding</u>
- arp inspection trust
- <u>dhcp snooping trust</u>
- ip-source trust
- show ip dhcp-relay snooping
- show ip dhcp-relay snooping binding
- debug ip dhcp-relay snooping
- debug ip dhcp-relay event
- debug ip dhcp-relay binding

27.1.1.1 ip dhcp-relay snooping

Syntax

ip dhcp-relay snooping

no ip dhcp-relay snooping

To enable or disable the DHCP-relay snooping function in a VLAN, run **ip dhcp-relay snooping**. To resume the corresponding default settings, run **no dhcp-relay snooping**.

Parameter

None

Default

The dhcp-relay snooping function is disabled by default.

Usage Guidelines

None

Example

The following example shows how to enable the DHCP-relay snooping function:

Switch_config#ip dhcp-relay snooping

Switch_config#

27.1.1.2 ip dhcp-relay snooping vlan

Syntax

ip dhcp-relay snooping vlan vlan_id no ip dhcp-relay snooping vlan vlan_id

Parameter

Parameter	Description
vlan id	ID of a VLAN Range: 1-4094

Default

None

Usage Guidelines

This command is used to configure the VLAN of DHCP snooping.

Example

The following example shows how to conduct the snooping inspection to the DHCP packets in VLAN2.

switch(config)# ip dhcp-relay snooping vlan 2

switch(config)#

27.1.1.3 ip dhcp-relay snooping vlan vlan_id max-client

Syntax

ip dhcp-relay snooping vlan vlan_id max-client number no ip dhcp-relay snooping vlan vlan_id max-client

Parameter

Parameter	Description
vlan_id	VLAN id. The value ranges from 1 to 4094.
number	The max user number: 0~65535

Default

The max user number is 65535 by default.

Usage Guidelines

You can use this command to set the maximum users in a VLAN of DHCP snooping. During this settings, the principle "first come and first be distributed" will be followed. When the number of users in the VLAN reaches the maximum value, new clients are then forbidden to distribute.

Example

The following example shows how to set snooping detection for DHCP packets on VLAN 2 and the number of maximum users is 3.

Switch_config#ip dhcp-relay snooping vlan 2 max-client 3

Switch_config#

27.1.1.4 ip dhcp-relay snooping database-agent

Syntax

ip dhcp-relay snooping database-agent A.B.C.D

no ip dhcp-relay snooping database-agent A.B.C.D

To configure the TFTP server for backing up DHCP-snooping binding, run **ip dhcp-relay snooping database-agent** *A.B.C.D*.

Parameter

Parameter	Description
A.B.C.D	Stands for the IP address of the TFTP server.

Default

There is no standby servers by default.

Usage Guidelines

If the address of the TFTP server is not configured, the binding backup is not conducted.

Example

The following example shows how to set the address of a server of backing up DHCP snooping binding to 192.168.1.1.

Switch_config#ip dhcp-relay snooping database-agent 192.168.1.1

Switch_config#

27.1.1.5 ip dhcp-relay snooping db-file

Syntax

ip dhcp-relay snooping db-file name [timestamp]
no ip dhcp-relay snooping db-file [timestamp]

Parameter

Parameter	Description
Name	File name which is saved during DHCP snooping binding
	backup.
timestamp	File name which is saved with timesatmp.

Default

There is no file.

Usage Guidelines

If the file name is not configured, the binding backup is not conducted.

Example

The following example shows how to set the file name of binding backup to **dhcp_binding.txt**.

switch(config)# ip dhcp-relay snooping db-file dhcp_binding.txt

switch(config)#

27.1.1.6 ip dhcp-relay snooping write-time

Syntax

ip dhcp-relay snooping write-time *num* no ip dhcp-relay snooping write-time

Parameter

Parameter	Description
Num	Stands for the interval of backing up the DHCP snooping
	binding.

Default

The Default of the interval is 30 minutes.

Usage Guidelines

The binding update will be checked during interval configuration. If the binding is updated, the binding information need be backed up.

Example

The following example shows how to set the interval of backing up the binding to 60 minutes.

switch(config)# ip dhcp-relay snooping write 60

switch(config)#

27.1.1.7 ip dhcp-relay snooping write-immediately

Syntax

ip dhcp-relay snooping write-immediately no ip dhcp-relay snooping write-immediately

Parameter

None

Default

None

Usage Guidelines

The command enables the item update is immediately written into the binding item database. It is recommended that do not enable the function when there are many items.

Example

The following example shows how to back up the binding item immediately after its configuration item is updated.

Switch_config#ip dhcp-relay snooping write-immediately

Switch_config#

27.1.1.8 ip dhcp-relay snooping log

Syntax

ip dhcp-relay snooping log no ip dhcp-relay snooping log

Parameter

None

Default

None

Usage Guidelines

After this function is enabled, if there are any packet of dhcp server in the untrust port, the syslog indicates that there is an illegal dhcp server.

Example

The following example shows how to enable the log function of dhcp snooping.

Switch_config#ip dhcp-relay snooping log

Switch_config#

27.1.1.9 ip dhcp-relay snooping rapid-refresh-bind

Syntax

ip dhcp-relay snooping rapid-refresh-bind

no ip dhcp-relay snooping rapid-refresh-bind

To enable dhcp snooping rapid refresh item function, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

None

Default

None

Usage Guidelines

After this function is enabled, the DHCP attack of fake MAC will be closed; when the client is allowed to change the access port, the IP address can be directly acquired without waiting for the expiration of the IP lease.

After this function is enabled, if the client changes its access port, the device with snooping enabled will take it as the dhcp packet attack of the fake mac and drop the dhcp packets.

Example

None

27.1.1.10 dhcp-relay snooping information option

Syntax

ip dhcp-relay snooping information option [format snmp-ifindex | manual | cm-type | hn-type [host] | hw-type]

no ip dhcp-relay snooping information option [format snmp-ifindex | manual | cm-type | hn-type [host] | hw-type]

Parameter

Parameter	Description
format snmp-ifindex	Fills in option 82 in SNMP ifindex mode (optional).
format manual	Fills in option 82 manually (optional).
format cm-type	Fills in option 82 in cm-type mode (optional).
Format hn-type	Fills in option 82 in cisco mode (optional).
[host]	Host standS for the main switch.
format hw-type	Fills in option 82 in hw-type mode (optional).

Default

Option 82 will not be added to or removed from the report by default.

Usage Guidelines

This command is used to set whether DHCP option82 can be handled when a switch is conducting DHCP snooping. If **format snmp-ifindex** is designated, Use the **SNMP ifindex** mode to fill in option 82; otherwise, fill in option 82 according to RFC3046.

Example

The following example shows how to fill in option 82 in **SNMP ifindex** mode: Switch_config#ip dhcp-relay snooping

 $\label{eq:source} Switch_config\#ip\ dhcp-relay\ snooping\ information\ option\ format\ snmp-ifindex$

The following example shows how to fill in option 82 in **manual** mode: Switch_config#ip dhcp-relay snooping Switch_config#ip dhcp-relay snooping vlan [WORD] //[WORD] is the vlan name that means need for enable snooping function

Switch_config# ip dhcp-relay snooping information option format manual

27.1.1.11 ip verify source vlan

Syntax

ip verify source vlan vlanid no ip verify source vlan vlanid

Parameter

Parameter	Description
vlan id	ID of a VLAN Range: 1-4094

Default

None

Usage Guidelines

This command is used to configure a VLAN for monitoring the source IP address. The "no" form of this command is used to cancel this VLAN. If the source IP and source MAC of the IP packet are not the legal client address assigned by the dhcp server monitored by dhcp snooping, then such a packet is regarded as an illegal packet in the vlan with IP source address monitoring enabled, and the packet is discarded Text.

Example

The following example shows how to conduct source IP address monitoring to the packets from all physical interfaces (except trusted interfaces) in VLAN2.

switch(config)# ip verify source vlan 2

switch(config)#

27.1.1.12 ip arp inspection vlan

Syntax

ip arp inspection vlan vlanid no ip arp inspection vlan vlanid

Parameter

vlan id Queries the time of the timer. Range: 1-4094

Default

None

Usage Guidelines

This command is used to configure a VLAN for monitoring the source address of the ARP packet. The "no" form of this command is used to cancel this VLAN. Under the VLAN that enables ARP packet source address monitoring, ARP packets with SIP and SMAC corresponding to the IP address and mac address assigned by the dhcp server to the client are discarded.

Example

The following example shows how to conduct source address monitoring to the ARP packets from all physical interfaces (except trusted interfaces) in VLAN2.

Switch_config#ip arp inspection vlan 2

Switch_config#

27.1.1.13 ip source binding

Syntax

ip source binding xx:xx:xx:xx:xx A.B.C.D interface name vlan vlan-id
no ip source binding xx:xx:xx:xx:xx A.B.C.D vlan vlan-id
To add MAC-to-IP binding to an interface, run ip source binding xx-xx-xx-xx A.B.C.D interface name.

Parameter

Parameter	Description
xx-xx-xx-xx-xx	MAC address.
A.B.C.D	IP address
Name	Name of the interface
vlan-id	vlan id nunber

Default

None

Usage Guidelines

None

Example

The following example shows how to bind MAC address **08:00:3e:00:00:01** to IP address **192.168.1.2** on interface GigaEthernet0/1.

Switch_config#ip source binding 08:00:3e:00:00:01 192.168.1.2 interface GigaEthernet0/1

Switch_config#

27.1.1.14 arp inspection trust

Syntax

arp inspection trust no arp inspection trust

Parameter

None

Default

The interfaces are distrusted ones by default.

Usage Guidelines

The ARP monitoring is not conducted to the ARP-trusted interface. The "no" form of this command is used to configure the Default of this interface.

Example

The following example shows how to set interface GigaEthernet0/1 to an ARP-trusted interface.

Switch_config_g0/1#arp inspection trust

27.1.1.15 dhcp snooping trust

Syntax

dhcp snooping trust no dhcp snooping trust

Parameter

None

Default

The default interface is a distrusted one.

Usage Guidelines

DHCP snooping is not conducted to the DHCP-trusted interface. The "no" form of this command is used to resume the Default of this interface.

Example

The following example shows how to set interface GigaEthernet0/1 to a DHCP-trusted interface.

Switch_config_g0/1#dhcp snooping trust

27.1.1.16 dhcp snooping deny

Syntax

dhcp snooping deny no dhcp snooping deny

Parameter

None

Default

DHCP snooping is allowed on the default interface.

Usage Guidelines

After this command is configured, DHCP snooping trust, IP-sourcetrust and ARP inspection trust are automatically enabled. The "no" form of this command is used to configure the Default of this interface.

Example

The following example shows how to disable DHCP snooping on interface GigaEthernet0/1.

Switch_config_g0/1#dhcp snooping deny

27.1.1.17 dhcp snooping information circuit-id

Syntax

dhcp snooping information circuit-id {string STRING | hex xx-xx-xx-xx-xx-xx}

Parameter	Description
string STRING	Stands for the character string carried by the sub-option of option82 circuit-id.

hex *xx-xx-xx-xx-xx* Stands for the Hex system carried by option82 circuit-id.

Default

None

Usage Guidelines

This command can be set on each port that connects the client. This command is used to configure option82 of the DHCP packet, which is sent by DHCP client to DHCP server and monitored by DHCP snooping. (the switch of manually set option82 need be enabled. See the command, **ip dhcp-relay snooping information option format manual**)

Example

The following example shows how to set option82 to group1 manually on interface g0/3, which belongs to interface g0/3.

Switch_config#ip dhcp-relay snooping

Switch_config#ip dhcp-relay snooping vlan 1

Switch_config#ip dhcp-relay snooping information option format manual

Switch_config#interface g0/3

Switch_config_g0/3#dhcp snooping information circuit-id string group1

27.1.1.18 dhcp snooping information remote-id string

Syntax

Parameter

Parameter	Description
string STRING	Stands for the character string carried by the sub-option
	of option82 remote-id.
hex xx-xx-xx-xx-xx-xx	Stands for the Hex system carried by option82
	remote-id.

Default

None

Usage Guidelines

This command can be set on each port that connects the client. This command is used to configure option82 of the DHCP packet, which is sent by DHCP client to DHCP server and monitored by DHCP snooping. (The switch of manually set option82 need be enabled. See the command, **ip dhcp-relay snooping information option format**

manual)

Example

The following example shows how to set option82 to group1 manually on interface g0/3, which belongs to interface g0/3.

Switch_config# ip dhcp-relay snooping

Switch_config# ip dhcp-relay snooping vlan 1

Switch_config#ip dhcp-relay snooping information option format manual

Switch_config#interface g0/3

Switch_config_g0/3# dhcp snooping information remote-id string group1

27.1.1.19 dhcp snooping information vendor-specific

Syntax

dhcp snooping information vendor-specific { string STRING | hex xx-xx-xx-xx-xx }

Parameter

Parameter	Description
string STRING	Stands for the character string carried by the sub-option of option82 verdor-specific.
hex xx-xx-xx-xx-xx	Stands for the Hex system carried by option82 verdor-specific.

Default

None

Usage Guidelines

This command can be set on each port that connects the client. This command is used to configure option82 of the DHCP packet, which is sent by DHCP client to DHCP server and monitored by DHCP snooping. (The switch of manually set option82 need be enabled. See the command, **ip dhcp-relay snooping information option format manual**)

Example

The following example shows how to set vendor-specific (suboption 9) of option 82 by the hex system on interface g0/3.

Switch_config# ip dhcp-relay snooping

Switch_config# ip dhcp-relay snooping vlan 1

Switch_config#ip dhcp-relay snooping information option format manual

Switch_config#interface g0/3

Switch_config_g0/3# dhcp snooping 00-00-00-09-0d-01-0b-78-69-61-6f-6d-69-6e-37-31-31-34 information

vendor-specific

hex

27.1.1.20 dhcp snooping information append

Syntax

dhcp snooping information append

dhcp snooping information append first-subop9-param { hex xx-xx-xx-xx-xx | hostname | vlanip } dhcp snooping information append second-subop9-param { hex xx-xx-xx-xx-xx | hostname | vlanip } no dhcp snooping information append

no dhcp snooping information append first-subop9-param

no dhcp snooping information append second-subop9-param

Parameter

Parameter	Description
first-subop9-param	Stands for the Hex system of the first parameter carried
hex	by option82 vendor-specific (suboption9).
[<i>xx-xx-xx-xx-xx</i> - <i>xx</i>]	
second-subop9-para	Stands for the Hex system of the second parameter
m hex	carried by option82 vendor-specific (suboption9).
[<i>xx-xx-xx-xx-xx</i> -xx]	
hostname	Stands for the host name carried by option82
	vendor-specific (suboption9).
vlanip	Stands for the IP address of the interface vlan carried by
	option82 vendor-specific (suboption9).

Default

None

Usage Guidelines

This command can be set on each port that connects the client. This command is used to configure option82 of the DHCP packet, which is sent by DHCP client to DHCP server and monitored by DHCP snooping.

This command without parameters acts as a switch command. When append is enabled, the information of this command will be added to suboption9 of option82. The added information is first-subop9-param and second-subop9-param.

Example

The following example shows how to expand the packet with option82 on interface g0/3 and add parameter 1 for suboption9 with the hex system 61-62-63-61-62-63.

Switch_config_g0/3# dhcp snooping information append

Switch_config_g0/3#dhcp snooping information append first-subop9-param hex 61-62-63-61-62-63

61-62-63-61-62-63 is the hex system for the added parameter.

27.1.1.21 dhcp snooping information drop

Syntax

dhcp snooping information drop no dhcp snooping information drop

Parameter

None

Default

None

Usage Guidelines

This command can be set on each port that connects the client. After this command is set, the request packets that contain option82 will be dropped on the stipulated port.

Example

The following example shows how to drop the dhcp packet with option82 on interface g0/3. Switch_config_g0/3# dhcp snooping information drop

27.1.1.22 ip-source trust

Syntax

ip-source trust no ip-source trust

Parameter

None

Default

The default interface is a distrusted one.

Usage Guidelines

Source IP address snooping is not conducted to the source-IP-trusted interface. The "no" form of this command is used to resume the Default of this interface.

Example

The following example shows how to set interface GigaEthernet0/1 to a source-ip-trusted interface. Switch_config_g0/1#ip-source trust

27.1.1.23 show ip dhcp-relay snooping

Syntax

show ip dhcp-relay snooping

Parameter

None

Default

None

Usage Guidelines

This command is used to display the information about DHCP-relay snooping configuration.

Example

The following example shows how to display the information about DHCP-relay snooping configuration. Switch_config#show ip dhcp-relay snooping

27.1.1.24 show ip dhcp-relay snooping binding

Syntax

show ip dhcp-relay snooping binding [all]

Parameter

None

Default

None

Usage Guidelines

This command is used to display the binding information about DHCP-relay snooping.

If the **all** parameter is in the command sentence, all binding information about DHCP-relay snooping will be displayed.

Example

The following example shows how to display the binding information about DHCP-relay snooping.

Switch_config#show ip dhcp-relay snooping binding

27.1.1.25 debug ip dhcp-relay snooping

Syntax

debug ip dhcp-relay snooping no debug ip dhcp-relay snooping

Parameter

None

Default

None

Usage Guidelines

This command is used to enable or disable the debugging switch of DHCP-relay snooping.

Example

The following example shows how to enable the debugging switch of DHCP-relay snooping.

Switch#debug ip dhcp-relay snooping

Switch#

27.1.1.26 debug ip dhcp-relay event

Syntax

debug ip dhcp-relay eventr no debug ip dhcp-relay event

Parameter

None

Default

None

Usage Guidelines

This command is used to enable or disable the event debugging switch of DHCP-relay.

Example

The following example shows how to enable the event debugging switch of DHCP-relay.

Switch#debug ip dhcp-relay event

Switch#

27.1.1.27 debug ip dhcp-relay binding

Syntax

debug ip dhcp-relay binding no debug ip dhcp-relay binding

Parameter

None

Default

None

Usage Guidelines

This command is used to enable or disable the binding debugging switch of DHCP-relay snooping.

Example

The following example shows how to enable the binding debugging switch of DHCP-relay snooping.

Switch#debug ip dhcp-relay binding

Switch#

28 MACFF Configuration Commands

28.1 MACFF Configuration Commands

28.1.1 macff enable

Syntax

To enable or disable the MACFF function globally, run the following command. To return to the default setting, use the no form of this command.

macff enable

no macff enable

Parameters

None

Default Value

MACFF function is disabled by default.

Usage Guidelines

None

Example

The following example shows how to enable the MACFF function.

Switch_config#macff enable

Switch_config#

28.1.2 macff vlan vlan_id enable

Syntax

macff vlan vlan_id enable no macff vlan vlan_id enable

Parameters	Description
vlan id	Stands for the ID of a VLAN. Value range: 1-4094

Default Value

None

Usage Guidelines

The command is used to send MAC-Based VLAN.

Example

The following example shows how to enable MACFF on VLAN 2 and the default gateway address is 192.168.1.1. Switch_config#arp 192.168.1.1 00:e0:0f:17:92:ed vlan 2

Switch_config#macff vlan 2 enable

Switch_config#

28.1.3 macff vlan vlan_id default-ar A.B.C.D

Syntax

To bind DHCP snooping to standby TFTP server, run the following command. To return to the default setting, use the no form of this command.

macff vlan vlan_id default-ar A.B.C.D no macff vlan vlan_id default-ar A.B.C.D

Parameters

Parameters	Description
A.B.C.D	IP address of the default gateway

Default Value

None

Usage Guidelines

This command is used when you set the IP address of the client host and the default gateway manually. Of course, you also need to add the DHCP snooping binding table manually.

Example

The following example shows how to set the address of MACFF binding gateway in vlan1 to 192.168.1.1 and the client's address to 192.168.1.10.

Switch_config#arp 192.168.1.1 00:e0:0f:17:92:ed vlan 1

Switch_config#ip source binding 6c:62:6d:59:18:b6 192.168.1.10 interface GigaEthernet0/1

Switch_config# macff vlan 1 default-ar 192.168.1.1

Switch_config#

28.1.4 macff vlan vlan_id enable other-ar A.B.C.D

Syntax

macff vlan vlan_id other_ar A.B.C.D no macff vlan vlan_id other_ar A.B.C.D

Parameters

Parameters	Description
A.B.C.D	Stands for the IP address of service AR.

Default Value

None

Usage Guidelines

When the network segment where the client host is has other service ARs and these ARs are only accessed by the client directly without the need of gateway to forwarding packets, this command can be used to add these service ARs.

Example

The following example shows how to set an AR with its IP being 192.168.2.254 and its MAC being 00:e0:0f:23:02:fc on port g0/1 in vlan1.

Switch_config#arp 192.168.2.254 00:e0:0f:23:02:fc vlan 1

Switch_config#interface g0/1

Switch_config_g0/1# dhcp snooping trust

Switch_config_g0/1#exit

Switch_config#macff vlan 1 other_ar 90.1.1.1

28.1.5 macff disable

Syntax

macff disable no macff disable

Parameters

None

Default Value

A specified port is allowed to enable MACFF.

Usage Guidelines

Though MACFF is enabled in a VLAN, MACFF can be disabled on one of the ports in this VLAN. The DHCPR snooping functionality is not affected on this port after disabled its MACFF functionality.

Example

The following example shows how to disable MACFF on port g0/1.

Switch_config_g0/1#macff disable

Switch_config_g0/1#

28.1.6 debug macff

Syntax

debug macff no debug macff

Parameters

None

Default Value

None

Usage Guidelines

This command is used to enable or disable the MACFF debugging switch.

Example

The following example shows how to enable the debugging switch of MACFF.

Switch_config#debug macff

Switch_config#

29 Layer-2 Tunneling Protocol Configuration Commands

29.1 Layer-2 Tunneling Protocol Configuration Commands

29.1.1 Layer-2 Tunneling Protocol Configuration Commands

29.1.1.1 I2protocol-tunnel

Syntax

[no] l2protocol-tunnel [stp]

To set layer 2 protocol tunnel, run the above command.

Parameter

None

Default

By default, the tunnel function of any L2 protocol is not enabled on the port of the switch. When the tunnel function is enabled, the tunnel function of all supported L2 protocols is enabled if no specific L2 protocol is designated.

Usage Guidelines

Currently only STP supports the tunnel function in our switches.

Example

The following example shows how to enable the tunnel function of the STP (include STP/PVST) on interface g0/2.

Switch_config# interface g0/2

Switch_config_g0/2# l2protocol-tunnel stp

29.1.1.2 no spanning-tree

Syntax

no spanning-tree

To disable the STP of a port, run the above-mentioned command.

Parameter

None

Default

STP can be enabled on all switch's ports by default.

Usage Guidelines

This command is used to disable STP on the port of a tunnel entrance, preventing this port from influencing the devices that access the tunnel by sending the STP packets.

Example

The following example shows how to disable STP on port g0/2:

Switch_config# interface g0/2

Switch_config_g0/2# no spanning-tree

30 QoS Configuration Commands

30.1 QoS Configuration Commands

30.1.1 QoS Configuration Commands

30.1.1.1 cos default

Syntax

To configure the default value of CoS, use the **cos default** command. To disable the configuration, use the no form of this command.

cos default cos

no cos default

Parameter

Parameter	Description
cos	Default cos value. The range is 0-7

Default

The default CoS value is 0.

Usage Guidelines

Use the command in layer-2 port configuration mode and global configuration mode.

In global configuration mode, the command will configure the default CoS value of all ports. However, in layer-2 port configuration mode, the command will only configure the default CoS value of the configured port.

Example

The following example shows how to set the cos value received in interface g0/1 to 4: Switch_config#inter g0/1

Switch_config_g0/1#cos default 4

30.1.1.2 scheduler weight bandwidth

Syntax

To set the weight of the wrr queues, use the first one of the following commands. To return to the default value, use the no form of this command.

scheduler weight bandwidth weight1...weightn no scheduler weight bandwidth

Parameter

Parameter	Description
weight1weight8	Stand for the weights of 8 CoS priority queues of WRR/DRR.
	0-127.

Default

The weight of each queue is 1.

Usage Guidelines

Use the command in layer-2 port configuration mode and global configuration mode.

If this command is run in global configuration mode, the bandwidth of all priority queues on all interfaces are affected. If this command is run in layer-2 port configuration mode, only the bandwidth of the priority queues on its interfaces are affected. This command validates only when the queue schedule mode is set to WRR. This command decides the bandwidth weight value of the CoS priority queue when the WRR schedule policy is used. The weight of the third queue and following queues can be assigned to 0. Once the weight of a queue is assigned

to 0, the following queue weight will be forced to 0. In this case, mixing mode is used.

Example

The following example shows how to set the weight values of eight CoS priority queues to 1, 2, 3, 4, 5, 6, 7 and 8 respectively.

Switch_config # scheduler weight bandwidth 1 2 3 4 5 6 7 8

30.1.1.3 scheduler policy

Syntax

scheduler policy { sp | wrr | wfq | fcfs }

no scheduler policy

To set CoS priority queue debug policy, use the scheduler policy command.

Parameter	Description
sp	Use the sp debug stratefgy.
wrr	Use the wrr debug strategy

wfq	Use the wfq debug strategy
fcfs	Use the fcfs debug strategy

Default

Use SP

Usage Guidelines

Use the command in layer-2 port configuration mode and global configuration mode.

If this command is run in global configuration mode, the queue debug policy of all ports are affected. If this command is run in port configuration mode, only the queue debug policy of its port are affected. After configure the command, the interface send debug mode is configured to specified value.

Example

The following example shows how to set configure interface send debug mode as wrr:

Switch_config # scheduler policy wrr

30.1.1.4 policy-map

Syntax

To set QOS policy-map, use the policy-map command. **policy-map** name **no policy-map** name

Parameter

Parameter	Description
name	Name of the policy map , the value range is 1 to 20 characters

Default

None

Usage Guidelines

Global configuration mode

After inputting this command, the system will enter QoS policy mapping configuration mode. There are following commands in this mode:

- **classify**: It is used to configure QoS flow.
- description: It is used to describe QoS policy mapping.

- exit: It is used to quit from QoS policy mapping configuration mode.
- **no**: It is used to cancel the command that formerly inputs.
- action: It is used to define QoS action.

Example

The following example shows how to configure QoS policy map:

Switch_config # policy-map myqos

30.1.1.5 classify

Syntax

To configure the matching data traffic of QoS policy, use the classify command.

classify {any | cos cos | icos icos | vlan vlanid | ivlan ivlanid | ethernet-type ethernet-type | precedence precedence-value | dscp dscp-value | tos tos-value | diffserv diffserv-value | ip ip-access-list | ipv6 ipv6-access-list | mac mac-access-list }

no classify { cos | icos | vlan | ivlan | ethernet-type | precedence | dscp | tos | diffserv | ip | ipv6 | mac }

Parameter	Description
Parameter	Description
any	match any data packets
cos cos	Configures the matching COS value; the valid range is 0 to 7
icos icos	Configures the matching interior tag COS value; the valid range is 0 to 7.
vlan vlanid	Configures the matching VLAN; the valid range is 1 to 4094
ivlan ivlanid	Configures interior tag vlan id. 1-4094.
ethernet-type	Configures the matching Ethernet type, 0x0600-0xFFFF
ethernet-type	
precedence precedence- <i>value</i>	The priority field in tos of ip packet (5-7 of tos), 0-7.
dscp dscp-value	Dscp field in tos of ip packet (2-7 of tos), 0~63.
tos tos-value	tos in the ip packet represents delay, throughput, reliability and cost field (1-4 of tos), 0~15.

diffserv diffserv-value	All tos field in lp packet: 8, 0-255.
ip ip-access-list	Configures the matching IP access list name; the range is 1 to 20 characters
ipv6 ipv6-access-list	Configures the matching IPV6 access list name. The valid range is 1 to 20 characters.

Default

Match any data packets

Usage Guidelines

QoS policy map configuration mode

All data flows in a QoS policy table must have the same mask value, and the port number in the ip access-list must be determined, not a range.

The permit rules in the IP access list and MAC access list used to match the data flow are valid, that is, the permit rule is used to match the data flow, and the deny rule is not used to configure the data flow.

When the qinq mode is enabled, that is, after the dot1q-tunnel command is configured, the downlink interface matches the vlan or cos value of the source packet with ivlan and icos values.

Example

Switch-policy-map#classify vlan 4

30.1.1.6 action

Syntax

To configure the matching data traffic policy of QoS policy map, use the action command.

action{bandwidth max-band | cos cos | drop | dscp dscp-value | precedence precedence-value | forward | icos icos | ivlanID { add addivlanid | ivlanid} | monitor session-value | quequ quequ-value | redirect interface-id | stat-packet | stat-byte | vlanID { add addvlanid | vlanid} | copy-to-cpu} no action {bandwidth | cos | drop | dscp | precedence | forward | | icos | ivlanID | monitor | quequ | redirect | stat-packet | stat-byte | vlanID | copy-to-cpu}

Parameter	Description
bandwidth max-band	Maximum bandwidth to a class, the range is 1 to 163840. Unit: 64Kbps.

cos cos	Sets cos field as cos-value 0~7.
drop	Drops the configured packets
dscp dscp-value	Define the dscp field of the matching traffic as dscp-value; the range is 0 to 63
precedence precedence-value	Sets tos priority field of the matching flow ip packets (5~7 of tos). The range is 0-7.
forward	No operation for the matching packet.
icos icos	Configures the matching interior tag COS value; the valid range is 0 to 7.
ivlan { add <i>ivlanid</i> ivlanid}	Configures to replace or add interior tag vlan id. 1-4094.
monitor session-value	Send the packets to monitor interface; the range is 1-4.
queue queue-value	Sets mapping queue; the range is 1-8.
redirect interface-id	Redirects the exit of the matching traffic.
stat-packet	Calculate the number of packets.
stat-byte	Calculate the number of bytes.
<pre>vlanID { add vlanid vlanid }</pre>	Sets replacing or adding exterior vlanid; the range is 1-4094.
copy-to-cpu	Forward to CPU simultaneously.

Default

None

Usage Guidelines

QoS policy map configuration mode.

vlan and cos can be effective on the non-dot1q-tunnel-uplink interface when ivlan and icos are configured. A policymap needs to be configured independently when Monitor is applied on the egress, or the result is abnormal.

In ingress direction, vlan, ivlan cannot configure with dscp, precedence, bandwidth, cir, mirror, stat, redirect. In ingress direction, cos, icos cannot configure with dscp, precedence, bandwidth, cir, mirror, stat, redirect. In egress direction, cos, icos cannot configure with dscp, precedence, bandwidth, cir, mirror, stat, redirect.

Example

Switch-policy-map#action redirect g0/1

30.1.1.7 qos policy

Syntax

To configure the QoS policy on interface, use the qos policy command. [no] qos policy name { ingress}

Paramter

Parameter	Description
name	Name of QoS policy maps
ingress	Affect the entrance

Deault

None

Usage Guidelines

Use the command in layer-2 port configuration mode and global configuration mode. When applied in egress direction, for most actions, the incoming flow must be a known unicast to correctly match.

Example

Apply the QoS policy named pmap on the g0/1 interface Switch_config#inter g0/1

Switch_config_g0/1# qos policy pmap ingress

30.1.1.8 show policy-map

Syntax

show policy-map {policy-map-name | interface [interface-id] | global }
Displays all or some designated QoS policy maps.

Parameter	Description
policy-map-name	Stands for the name of a QoS policy map.
interface interface-id	Displays the QoS strategy of a port.

global Global configuration strategy

Default

None

Usage Guidelines

None

Example

The following example displays all QoS strategy mapping tables.

Switch_config#show policy-map

1

policy-map

classify any

action redirect g0/1

policy-map 11

classify any

action

Switch_config#

30.1.1.9 trust

Syntax

[no]qos trust { cos | dscp | untrust }
To configure in trust mode, use qos trust command.

Parameter

Parameter	Description
cos	Modes of trust.
dscp	Trust mode.
untrust	Untrust mode.

Default

None

Usage Guidelines

Use the command in global configuration mode.

Example

The following example shows how to configure trust cos: Switch_config#qos trust cos

31 **DoS Attack Prevention Configuration Commands**

31.1 **DoS Attack Prevention Configuration Commands**

31.1.1 DoS-Attack Prevention Configuration Commands

DoS attack prevention configuration commands are shown below:

- dos enable
- show dos

31.1.1.1 dos enable

Syntax

dos enable {all / icmp icmp-value | ip | l4port | mac | tcpflags | tcpfrag tcpfrag-value | tcpsmurf | icmpsmurf | ipsmurf }

no dos enable { all / icmp icmp-value | ip | l4port | mac | tcpflags | tcpfrag tcpfrag-value | tcpsmurf | icmpsmurf | ipsmurf }

Parameter	Description
all	Enables to prevent all kinds of DoS attacks.
icmp icmp-value	Enables to check ICMP messages. The maximum length of ICMP message is <i>icmp-value</i> . ICMP and ICMPv6 messages with length greater than icmp-value will be discarded
ip	Enables to prevent the dos attack messages whose source IP address is same as its destination IP address.
l4port	Enables to check the layer-4 messages whose source port is same as its destination port.
mac	Enables to prevent the messages whose source MAC address is same as its destination MAC address.
tcpflags	Starts to check the TCP packets with illegal flags.
tcpfrag tcpfrag-value	Enables to check dos attack messages of tcp subcontract, the minimum tcp header is <i>tcpfrag-value</i> , the default value is 20.

tcpsmurf	Enables to prevent TCP messages whose destination address is
	broadcast address.
icmpsmurf	Enables to prevent ICMP messages whose destination address is broadcast address.
ipsmurf	Enables to prevent IP messages whose destination address is broadcast address.

Default

DoS attack prevention is disabled by default.

Usage Guidelines

DoS attack prevention is configured in global mode.

The ip sub-function can defend against LAND attack, preventing IP messages whose source address is the same as destination address.

The icmp sub-function can drop packets: 1. ICMP, ICMPv6 ping request message that is large than *icmp-value*; 2. Subcontact ICMP, ICMPv6 message. It can defend against PING attack.

The l4port sub-function can drop TCP/UDP packets whose source port number is the same as destination port number.

The mac sub-function can check MAC address, preventing messages whose source MAC address is the same as destination MAC address.

The tcpflags sub-function can drop the following 4 kinds of TCP packets: 1.TCP SYN flag = 1 & source port<1024; 2.TCP control flags = 0 & sequence = 0; 3.TCP FIN URG PSH = 1 & sequence = 0; 4.TCP FIN SYN = 1.

The tcpfrag sub-function can drop the following 2 kinds of TCP packets: 1. TCP subcontract whose header is smaller than *tcpfrag-value*; 2. TCP subcontract whose offset is 1. It can defend against TearDrop attack.

The tcpsmurf sub-function can defend against tcpsmurf attack, preventing TCP messages whose destination address is the broadcast address.

The icmpsmurf sub-function can defend against icmpsmurf attack, preventing ICMP messages whose destination address is the broadcast address.

The ipsmurf sub-function can defend against ipsmurf attack, preventing IP messages whose destination address is the broadcast address.

Example

The following example shows how to set DoS attack prevention subfunctions in global mode to prevent IP messages whose source IP address is same as destination IP address.

Switch_config#dos enable ip

The following example shows how to set **dos enable tcpflags** to check illegal TCPflag messages in global mode. Switch_config#dos enable tcpflags

31.1.1.2 show dos

Syntax

show dos

It is used to show all DoS attack prevention functions that users have set.

Parameter

None

Default value

None

Remarks

EXEC mode

Example

The following example shows how to display all DoS attack prevention functions.

Switch_config#dos enable all

Switch_config#show dos

dos enable icmp

dos enable ip

dos enable l4port

dos enable mac

dos enable tcpflags

dos enable tcpfrag

dos enable tcpsmurf dos enable icmpsmurf

dos enable ipsmurf

Switch_config#

The following example shows how to set **dos enable ip** to display the sub-function that users have set. Switch_config#dos enable ip Switch_config#show dos dos enable ip

31.2 Anti-Attack Configuration Commands

31.2.1 Anti-Attack Configuration Commands

31.2.1.1 filter period

Syntax

To configure filter period for attack, use the filter period command.

filter period time

To configure the attack checkup period, run the following command.

no filter period

Parameter

Parameter	Description
time	The filter period for attack in seconds. It is considered as attack when the attack
	source sends packets above the specified number in any filter period time.
	Value range: 1-600s.

Default

10 seconds

Command Mode

Global configuration mode

Example

Switch_config# filter period 15

Related Command

filter threshold

31.2.1.2 filter threshold

Syntax

To configure the filter threshold value, use the filter threshold value command. Vary your configuration in terms of the packet type.

filter threshold type value

To resume to the default value, use the no form of the previous command. **no filter threshold** *type*

Parameter

Parameter	Description
type	Packet type, including ARP, BPDU, DHCP, IGMP, ICMP, IP.
value	It is considered as attack when the receiving packets excddes the filter threshold
	value.
	Value range: 5-2000.

Default

1000

Command Mode

Global configuration mode

Example

Switch_config# filter threshold ip 1500

Related Command

filter period

31.2.1.3 filter block-time

Syntax

To configure the time to block attack resource, use the filter block-time value command.

filter block-time value

To resume to the default value, use the no form of this command. **no filter block-time**

Parameter	Description
Value	Time to block attack source in seconds.

Value range: 1-86400.

Default

300 seconds

Command Mode

Global configuration mode

Example

Switch_config# filter block-time 600

Related Command

filter period filter threshold

31.2.1.4 filter polling period

Syntax

To configure the period of the attack source polling check in the hybrid mode, run the following command. **filter polling period** *time*

To resume to the default value, use the no form of the previous command.

no filter polling period

Parameter

Parameter	Description
time	The period of the polling attack after blocking the attack source. Unit: second
	Value range: 1-600.

Default

10s

Command Mode

Global configuration mode

Example

Switch_config# filter polling period 20

Related Command

filter polling threshold filter polling auto-fit

31.2.1.5 filter polling threshold

Syntax

To configure the filter polling threshold in the hybrid mode, run the following command.

filter polling thredhold type value

To resume to the default value, use the no form of the previous command.

no filter polling threshold type

Parameter

Parameter	Description
type	The packet type, including ARP, BPDU, DHCP, IGMP, ICMP, IP.
value	The attack source is taken as existed if 1-2000 packets are received within any
	polling period.
	Value range: 1-2000.

Default

750 packets

Command Mode

Global configuration mode

Example

Switch_config# filter polling threshold ip 1500

Related Commands

filter polling period filter polling auto-fit

31.2.1.6 filter polling auto-fit

Syntax

To configure auto-fit the polling detect period and thereshold, run the following command. The command is efficient by default. The polling period equals with the attack detection period and the polling packet threshold equals to 3/4 of the attack detection packet threshold.

filter polling auto-fit

To resume to the default setting, use the no form of this command. **no filter polling auto-fit**

Parameter

None

Command Mode

Global configuration mode

Example

Switch_config# filter polling auto-fit

Related Commands

filter polling period filter polling threshold

31.2.1.7 filter igmp

Syntax

To enable IGMP attack detection, run the following command. filter igmp To disable IGMP attack detection, run the no form of the previous command. no filter igmp

Parameter

None

Command mode

Global configuration mode

Example

Switch_config# filter igmp

Related command

filter enable

31.2.1.8 filter ip source-ip

Syntax

To enable IP attack detection, run the following command. **filter ip source-ip** To disable IP attack detection, run the no form of the previous command. **no filter ip source-ip**

Parameter

None

Command mode

Global configuration mode and physical port configuration mode. The command is efficient when both the global port and the physical port are configured.

Example

Switch_config# filter ip source-ip

Switch_config# interface g0/1

switch_config_g0/1# filter ip source-ip

Related command

filter enable

31.2.1.9 filter icmp

Syntax

To enable ICMP attack detection, run the following command. filter icmp To disable ICMP attack detection, run the no form of the previous command. no filter icmp

Parameter

None

Command mode

Global configuration mode and physical port configuration mode. The command is efficient when both the global port and the physical port are configured.

Example

Switch_config# filter icmp

Switch_config# interface g0/1

switch_config_g0/1# filter icmp

Related command

filter enable

31.2.1.10 filter icmpv6

Syntax

To enable ICMPv6 attack detection, run the following command. **filter icmpv6** To disable ICMPv6 attack detection, run the no form of the previous command. **no filter icmpv6**

Parameter

None

Command mode

Global configuration mode and physical port configuration mode. The command is efficient when both the global port and the physical port are configured.

Example

Switch_config# filter icmpv6 Switch_config# interface g0/1 switch_config_g0/1# filter icmpv6

Related command

filter enable

31.2.1.11 filter dhcp

Syntax

To enable DHCP attack detection, run the following command. filter dhcp To disable DHCP attack detection, run the no form of the previous command. no filter dhcp

Parameter

None

Command Mode

Global configuration mode and physical port configuration mode. The command is efficient when both the global port and the physical port are configured.

Example

Switch_config# filter dhcp

Switch_config# interface g0/1

switch_config_g0/1# filter dhcp

Related Commands

filter enable

31.2.1.12 filter arp

Syntax

To fliter ARP attack, use the filter arp command.

filter arp

To resume to the default value, use the no form of the previous command. **no filter arp**

Parameter

None

Command Mode

Physical interface configuration

Example

Switch_config_g0/1# filter arp

Related Command

filter enable

31.2.1.13 filter bpdu

Syntax

To enable BPDU attack detection, run the following command. filter bpdu To resume to the default setting, use the no form of previous command. no filter bpdu

Parameter

None

Command Mode

Physical interface configuration

Example

Switch_config_g0/1# filter bpdu

Related Commands

filter enable

31.2.1.14 filter mode

Syntax

To configure the filter mode, run the following command. **filter mode [raw | hybrid]**

Parameter

Parameter	Description	
raw	To configure Filter as Raw mode.	
hybrid	To configure Filter as Hybrid mode.	

Default

Hybrid mode

Command Mode

Global configuration mode

Example

Switch_config# filter mode raw

Related Command

filter enable

31.2.1.15 filter enable

Syntax

To enable filter feature, use the filter enable command.

filter enable

To resume to the default setting, run the no form of the previous command. **no filter enable**

Parameter

None

Command Mode

Global configuration mode

Example

Switch_config# filter enable

Related Command

None

31.2.1.16 filter shutdown-action

Syntax

To configure to shut down the port when an attack source is detected in raw mode, run the following command.

filter shutdown-action

To configure not to shut down the port when an attack source is detected in raw mode,, use the no form of the previous command.

no filter shutdown-action

Parameter

None

Command mode

Global configuration mode

Example

Switch_config# filter shutdown-action

Related command

None

31.2.1.17 show filter

Syntax

To display working state of the anti-attack feature of the current switch, use the show filter command.

show filter

To resume to the default setting, use the no form of the previous command.

show filter summary

Parameter

None

Command Mode

Non-user mode

Example

arp

Switch	#show filter							
Filter p	eriod 600 second	s, polling interv	al 600 sec	conds				
Filter t	hresholds:							
Filter t	ype(major code)	Minor code Th	nreshold	Polling				
arp		А		5		3		
bpdu		В		1000	7	50		
dhcp		D		1000	7	50		
ip		I		1000	75	0		
icmp		I		1000	75	50		
igmp		I		1000	75	50		
Filters	blocked:							
Cause	Address	Seconds	Discard		Rate	Polling Inte	erface	
arp	0000.abcd.1234	7.41	0		0/0	592.59	G0/1	
Filters	counting:							
Cause	Address	Sec	onds	Count	Interfac	ce		
0000.abcd.1	234 15.5	9 1	G0/	1				

Filters blocked: indicates MAC address of the blocked attack source, blocked time and source interface.

Filters counting: indicates MAC address of the attack source, counting time, the number of the receiving packets and the source interface.

32 Network Protocol Configuration Commands

32.1 IP Address Configuration Commands

32.1.1 IP Address Configuration Commands

32.1.1.1 arp

Syntax

To add a static and permanent entry in the Address Resolution Protocol (ARP) cache, use the **arp** command in global configuration mode. To remove an entry from the ARP cache, use the no form of this command. **arp** *ip*-address hardware-address vlan [**alias**] **no arp** *ip*-address [vlan]

Parameter

Parameter	Description		
ip-address	IP address corresponding to the local data-link address.		
hardware-address	Physical address of local data-link address		
vlan	vlan belongs to the static arp		
alias	(Optional) router responds to ARP requests as if it were the interface of the specified address.		

Default

No entries are permanently installed in the ARP cache.

Command Mode

Global configuration mode

Usage Guidelines

The common host all supports dynamic ARP analysis, so user doesn't need to configure static ARP entries for host.

Example

The following is an example of a static ARP entry for a typical Ethernet host:

arp 1.1.1.1 00:12:34:56:78:90 vlan1

Related Commands

clear arp-cache

32.1.1.2 arp pending-time

Syntax

To configure the pending time for ARP cache resolution, use the **arp pending-time** command. To resume the default setting, use the no form of this command.

arp pending-time seconds

no arp pending-time

Parameter

Parameter	Description
seconds	The pending time (seconds) for ARP cache resolution.

Default

15s

Command Mode

Global configuration mode

Usage Guidelines

The first resolution of arp will generate an incomplete entry. This command sets the survival time of the incomplete entry.

Example

The following example shows how to set the arp pending time to 10 seconds.

arp pending-time 10

Related Commands

show arp

32.1.1.3 arp max-incomplete

Syntax

To configure the maximum number of incomplete ARP entries, use the arp max-incomple command. To resume

the default setting, use the no form of this command. arp max-incomplete number no arp max-incomplete

Parameter

Parameter	Description
number	The maximum number of incomplete ARP entries

Default

0 (means no upper limit)

Command Mode

Global configuration mode

Usage Guidelines

This command sets the upper limit number of incomplete entries during ARP resolution, that is, the number of entries that can be simultaneously resolved.

Example

The following example shows how to configure an upper limit of incomplete ARP cache entries to 10.

arp max-incomplete 10

Related Commands

show arp

32.1.1.4 arp max-gw-retries

Syntax

To set the maximum retransmissions of the Re-Detect packets, run the first one of the following commands. To return to the default setting, use the no form of this command.

arp max-gw-retries number

no arp max-gw-retries

Parameter

Parameter	Description
number	Sets the maximum retransmissions of the Re-Detect packets.

Default

3

Command Mode

Global configuration mode

Usage Guidelines

The ARP entries, which the routing entry gateway depends on, require being redetected at their aging so that the promptness and correctness of the hardware subnet routing can be guaranteed. This command is here used for setting the maximum ARP retransmissions in the redetection process. The bigger its value is, the greater chance the detection has.

Example

The following example shows how to set the maximum retransmissions of the Re-Detect packets to 5:

arp max-gw-retries 5

Related Commands

show arp

32.1.1.5 arp retry-allarp

Syntax

To set whether to carry on redetection at the aging of ARP entries (not just meaning the gateway-related ARP entries), run the following command:

arp retry-allarp

no arp retry-allarp

Parameter

None

Command Mode

Global configuration

Usage Guidelines

By default, redetection is conducted only to the aging ARPs, which the routing entry gateway depends on. However, if this command is enabled, redetection will be conducted towards all types of aging ARP entries.

Example

The following example shows how to enable redetection to be carried out to all aging ARP entries.

arp retry-allarp

Related Commands

show arp

32.1.1.6 arp timeout

Syntax

To configure the exist time that a dynamic ARP entry remains in the Address Resolution Protocol (ARP) cache, use the **arp timeout**. To restore the default value, use the no form of this command or **default arp timeout** command. **arp timeout** *seconds*

no arp timeout

default arp timeout

Parameter

Parameter Description			
	seconds	Time in seconds that an entry remains in the ARP cache. A value of	
		zero means that entries are never cleared from the cache.	

Default

14400 seconds (4 hours)

Mode

Interface configuration

Usage Guidelines

This command is ignored when it is not configured on interfaces using ARP. The show interface command displays the ARP timeout value, as seen in the following example from the show interfaces command: ARP type: ARPA, ARP timeout 04:00:00

Example

The following example sets the ARP timeout to 900 seconds on Ethernet interface 10 to allow entries to time out more quickly than the default

interface vlan 10

arp timeout 900

Related Commands

show interface

32.1.1.7 arp dynamic

Syntax

To configure dynamic learning of ARP, use the **arp dynamic** command. To restore the default seeting, use the no form of this command.

arp dynamic

no arp dynamic

Parameter

None

Command Mode

Interface configuration mode

Example

The following example shows how to allow dynamic ARP learning on interface VLAN 10:

interface vlan 10

arp dynamic

Related Commands

show interface

32.1.1.8 arp send-gratuitous

Syntax

To configure gratuitous ARP sending function, run the first one of the following commands. To return to the default setting, use the no form of this command.

arp send-gratuitous [interval value]

no arp send-gratuitous

Parameter

Parameter	Description
interval	Sets the interval of sending gratuitous ARP.
value	Sets time interval. The default is 120s. Value range: 15-600s.

Command Mode

Interface configuration

Example

The following example shows how to enable gratuitous ARP sending on Interface Vlan1 and set the time interval to 180s.

switch_config_v1#arp send-gratuitous interval 180

Related Commands

arp

32.1.1.9 arp fast-refresh

Syntax

To configure ARP fast refresh, run the first one of the following commands. To return to the default setting, use the no form of this command.

arp fast-refresh no arp fast-refresh

Parameter

None

Command Mode

Global configuration mode

Example

The following example shows how to enable ARP fast refresh.

switch_config#arp fast-refresh

Related Commands

arp

32.1.1.10 arp timeout-adjust

Syntax

To configure ARP timeout adjustion, run the first one of the following commands. To return to the default setting, use the no form of this command.

arp timeout-adjust [time]

no arp timeout-adjust

Parameter

Parameter	rameter Description			
time	Time of time-out adjustio. Default value is 15s. The range is from 0 to			
	1000s.			

Command Mode

Global configuration mode

Example

The following example shows how to configure ARP timeout to 1s.

switch_config#arp timeout-adjust 1

Related Commands

arp

32.1.1.11 arp synchronize

Syntax

To configure ARP synchronization parameter, run the first one of the following commands. To return to the default setting, use the no form of this command.

arp synchronize [type]

no arp synchronize [type]

Parameter

Parameter		De	scription		
type	Synchronization	parameter	types,	including	delete-period,
	update-period,	ctrlcard-only	y-timeout,	respon	se-immediately,
	request-immediat	tely, deletion,	distributed	d-handle-arp	oreply

Command Mode

Global configuration mode

Example

The following example shows how to synchronize the deletion of arp.

switch_config#arp synchronize deletion

Related Commands

arp

32.1.1.12 clear arp-cache

Syntax

To clear all dynamic entries from the ARP cache, use the clear arp-cache command.

clear arp-cache[ip-address [mask | vlan vlanid]]

Parameter

Parameter	Description
ip-address	IP or subnets
mask	Subnets mask
vlanid	Vlan number

Command Mode

EXEC

Example

The following example removes all dynamic entries from the ARP cache:

clear arp-cache

Related Command

arp

32.1.1.13 clear arp statistics

Syntax

To configure ARP statistics, run the following command.

clear arp statistics[vlan vlan]

Parameter

The parameter vlan means to only show statistics within a vlan.

Command Mode

EXEC

Example

The following command clears all arp statistics (the current number will not be cleared).

clear arp statistic

Related Commands

show arp statistic

32.1.1.14 ip address

Syntax

To set an IP address and mask for an interface, use the **ip address** command. Currently, there is no strict regulation to distinguish A.B.C IP address. But multicast address and broadcast address can not be used (all host section is '1'). Other than the Ethernet, multiple interfaces of other types can be connected to the same network. Other than the unnumbered interface, the configured network range to the Ethernet interface can not be the same as the arbitrary interfaces of other types. You should configure the primary address before configuring the secondary address. Also you should delete all secondary addresses before deleting the primary address. IP packets generanted by the system, if the upper application does not specify the soruce address, the router will use the IP address of the packet. If the IP address is uncertain (like interface route), the router will use the primary address of the sending interface. If the ip address is not configured on an interface, also it is not the unnumbered interface, and then this interface will not deal with any IP packet. To remove an IP address or disable IP processing, use the

no form of this command. **ip address** *ip-address mask* [secondary] **no ip address** *ip-address mask*

no ip address

Parameter

Parameter	Description
ip-address	IP address
mask	IP mask
secondary	(optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.

Default

No IP address is defined for the interface.

Command Mode

interface configuration mode

Usage Guidelines

If any router on a network segment uses a secondary address, all other devices on that same segment must also use a secondary address from the same network or subnet. Inconsistent use of secondary addresses on a network segment can very quickly cause routing loops. When you are routing using the Open Shortest Path First (OSPF) algorithm, ensure that all secondary addresses of an interface fall into the same OSPF area as the primary addresses

Example

In the following example, 202.0.0.1 is the primary address, 255.255.255.0 is the mask and 203.0.0.1 and 204.0.0.1 are secondary addresses for Ethernet interface 1/0:

interface vlan 10 ip address 202.0.0.1 255.255.255.0 ip address 203.0.0.1 255.255.255.0 secondary ip address 204.0.0.1 255.255.255.0 secondary

32.1.1.15 ip host

Syntax

To define a static host name-to-address mapping in the host cache, use the **ip host** command in global configuration mode. To remove the host name-to-address mapping, use the no form of this command. **ip host** *name address*

no ip host name

Parameter

Parameter	Description
name	Host name
Address	IP address

Default

Disabled

Command Mode

Global configuration

Example

The following example shows how to configure host name dns-server to IP host address 202.96.1.3:

ip host dns-server 202.96.1.3

32.1.1.16 show arp

Syntax

To display the entries in the Address Resolution Protocol (ARP) table, including the ARP mapping of interface IP address, the static ARP mapping that user configures and the dynamic ARP mapping, use the **show arp** command. show arp

Parameter

This command has no parameters or keywords.

Mode

EXEC

Usage Guidelines

The display includes:

Parameter	Description
Protocol	Displays the type of the network address that maps with the physical address. IP, for example.
Address	Displays the network address that maps with the physical address. IP address, for example.
Age	Displays the age in seconds. The router will refresh the time to 0 when using this ARP entry.
Hardware Address	Displays the physical address that corresponds to the network address. It is empty for the unanalyzed entries.
Туре	Specifies request encapsulation types that the interface use, including ARPA, SNAP and so on.
Interface	Interface, interface connected with the network address

Example

The following command displays ARP cache.

	switch#show	arp						
	Protocol I	P Address	Age(min)	Hardv	vare Address	Туре	Interfa	ace
	IP	192.168.2	0.77	11	00:30:80:d5	:37:e0	ARPA	vlan 10
	IP	192.168.2	0.33	0	Incomple	te		
	IP	192.168.2	0.22	-	08:00:3e:33	:33:8a	ARPA	vlan 10
	IP	192.168.2	0.124	0	00:a0:24:9e	:53:36	ARPA	vlan 10
IP	192.168.0.22	- (08:00:3e:33:	33:8b	ARPA vlan 2	11		

32.1.1.17 show arp statistics

Syntax

To show ARP related statistical table items, use the following command. **show arp statistic[vlan** *vlan*]

Parameter

The parameter vlan means to only show statistics within a vlan.

Command Mode

EXEC

Usage Guidelines

Display description:

Total statistics	Including total number of arp, incomplete arp, complete arp.
Add and delete statistics	Accumulated times of adding and deleting arp.
Physical egress migration statistics	The number of physical address migrations due to the change in mac address egress.
Delete reason statistics	Including aging, caused by various configurations, mac address migration, command line deletion, etc.

Example

The following command displays ARP statistics:

switch_config#show arp statistics

Total ARP entries 1, Complete ARP entries 1, Incomplete ARP entries 0

Total added: 20, Total deleted: 19

Physical port changed: 18

Deleted by reason

Aged out	: 17
Overwritten by static	: 0
IP address configured	:0
IP address deleted	:0
Interface deleted	:0
Protocol up-down	: 0
MAC address aged	: 2
Deleted on other cards	: 0
Static arp deleted	: 0

Clear arp : 0

HSRP or OIR insertion : 0

HSRP or sync static deletion: 0

32.1.1.18 **show hosts**

Syntax

To display all entries of the host name—address cathe, use the **show hosts** command.

show hosts

Parameter

This command has no parameters or keywords.

Command Mode

EXEC

Example

The following command shows how to display all host names/address mappings.

show hosts

Related Command

None

32.1.1.19 show ip interface

Syntax

To display the IP configuration on interface, use the **show ip interface** command **show ip interface** [**type** *number* / **brief**]

Parameter

Parameter	Description
type	(Optional) Interface type.
number	(Optional) Interface number.

brief

(Optional) Displays the brief of ip protocols of all vlan ports

Command Mode

EXEC

Usage Guidelines

If the interface link layer is usable, the line protocol is marked "Protocol up." If you configure IP address on this interface, the router will add a direct route to the routing table. If the link layer protocol is marked "Protocol down", the direct route will be deleted. This command displays the specified interface information if specified interface type and number, or IP configuration information of all interfaces will be displayed.

Example

The following example shows how to display IP configuration on interface VLAN 10.

switch#show ip interface vlan 10 vlan 10 is up, line protocol is up IP address : 192.168.20.167/24 Broadcast address : 192.168.20.255 Helper address : not set MTU : 1500(byte) Forward Directed broadcast : OFF Multicast reserved groups joined: 224.0.0.9 224.0.0.6 224.0.0.5 224.0.0.2 224.0.0.1 Outgoing ACL : not set Incoming ACL : not set IP fast switching : ON IP fast switching on the same interface : OFF ICMP unreachables : ON ICMP mask replies : OFF ICMP redirects : ON

Display description:

Domain	Description
vlan 10 is up	If the interface hardware is usable, the interface is marked "up." For an
	interface to be usable, both the interface hardware and line protocol

	must be up.
line protocol is up	If the interface can provide two-way communication, the line protocol is
	marked "up." For an interface to be usable, both the interface hardware
	and line protocol must be up.
IP address	IP address and mask for interface
Broadcast address	Displays broadcast address
MTU	Displays the MTU value set on the interface.
Helper address	Displays helper address.
Directed broadcast	Whether the interface forwards the directed broadcast packet.
forwarding	
Multicast reserved groups	The multicast group the interface joined.
joined	
Outgoing ACL	Outgoing ACL.
Incoming ACL	Incoming ACL.
IP fast switching	Whether enable fast switching on the interface.
Proxy ARP	Whether the interface supports proxy ARP.
ICMP redirects	Whether the interface forwards ICMP redirection packet.
ICMP unreachables	Whether forwards ICMP unreachable packets.
ICMP mask replies	Whether forwards ICMP mask reply packets.

32.2 **DHCP Client Configuration Commands**

32.2.1 DHCP Client Configuration Commands

The section describes DHCP configuration commands, which configure and monitor DHCP protocols on the switch.

32.2.1.1 ip address dhcp

Syntax

To obtain an IP address for the interface through Dynamic Host Configuration Protocol (DHCP), run **ip address dhcp**. To delete all IP addresses, use the no form of this command. **ip address dhcp** no ip address dhcp

Parameter

None

Default

None

Command Mode

Interface configuration mode

Usage Guidelines

The command enables the interface to obtain an IP address through DHCP protocol, which is conducive for connecting the ISP through the Ethernet interface.

When the command is configured, the switch will forward DHCPDISCOVER information to the DHCP server on the internet.

When the command is canceled, the switch will forward DHCPRELEASE information.

Example

The following example shows how VLAN11 interface obtains an IP address through DHCP protocol.

! interface vlan11 ip address dhcp

Related Commands

ip dhcp client ip dhcp-server show dhcp lease show dhcp server

32.2.1.2 ip dhcp client

Syntax

To configure parameters of local switch DHCP client, run the following command.

ip dhcp client { bootfileaddmac | minlease seconds | retransmit count | select seconds / class_identifier WORD /
client_identifier hrd_ether | retry_interval <1-1440> | tftpdownload | timeout_shut }
no ip dhcp client { bootfileaddmac | minlease | retransmit | select | class_identifier | client_identifier |
retry_interval | tftpdownload | timeout_shut }

Parameter

Parameter	Description
bootfileaddmac	(optional) Enables to add client MAC to the bootfile file name.
minlease seconds	(optional) Stands for the acceptable minimum lease time, which ranges from 60 to 86400 seconds.
retransmit count	(optional) Stands for the retransmission times of the protocol packets, which ranges from 1 to 10.
select seconds	(optional) Stands for the interval of SELECT, which ranges from 5 to 30.
class_identifier WORD	(optional) Stands for class ID belongs to the client.
client_identifier hrd_ether	(optional) Configures the type of the client ID as Ethernet.
retry_interval <1-1440>	(optional) Configures the retransmission interval.
tftpdownload	(optional) Enable tftp download function.
timeout_shut	(optional) When the time is out, enable the interface up/down.

Default

The default of minlease is 60s. The default of retransmit is 4 times. The default of select is 5s. The default of class_identifier is no parameter. The default of client_identifier is the character string. The default of retry_interval is 1 mins. The default of timeout_shut is no parameter.

Command Mode

Global configuration mode

Usage Guidelines

Modify these parameters, according to the network structure and the DHCP server. To return to the default setting, use the no form of these commands.

Example

The following example shows how to set the minilease time on the DHCP client to 100s.

ip dhcp client minlease 100

The following example shows how to set the retransmit times on the DHCP client to 3.

ip dhcp client retransmit 3

The following example shows how to set the time interval of SELECT on the DHCP client to 10s.

ip dhcp client select 10

Related Commands

ip address dhcp ip dhcp-server show dhcp lease show dhcp server

32.2.1.3 ip dhcp-server

Syntax

To specify a familiar DHCP server, you can use ip dhcp-server to designate the IP address of the DHCP server. **ip dhcp-server** *ip-address* **no ip dhcp-server** *ip-address*

Parameter

Parameter	Description
ip-address	IP address of DHCP server

Default

No any default IP address on the DHCP server.

Command Mode

Global configuration

Usage Guidelines

You can designate an IP address for a DHCP server by using this command, which will not replace the previously designated IP address of the DHCP server.

The delete all previous configured IP addresses on the DHCP server, use the no form of this command.

Example

The following example shows how to designate IP address 192.168.20.1 on the DHCP server:

ip dhcp-server 192.168.20.1

Related Commands

ip address dhcp ip dhcp client show dhcp lease show dhcp server

32.2.1.4 show dhcp lease

Syntax

To check DHCP server distribution information on the switch, run the following command:

Show dhcp lease

Parameter

None

Default

None

Command Mode

EXEC

Usage Guidelines

The command is used to check DHCP server distribution information on the switch.

Example

The following example shows DHCP distribution information on the switch:

switch#show dhcp lease
Temp IP addr: 192.168.20.3 for peer on Interface: vlan11
Temp sub net mask: 255.255.255.0
DHCP Lease server: 192.168.1.3, state: 4 Rebinding
DHCP transaction id: 2049
Lease: 86400 secs, Renewal: 43200 secs, Rebind: 75600 secs
Temp default-gateway addr: 192.168.1.2
Next timer fires after: 02:34:26

Retry count: 1 Client-ID: router-0030.80bb.e4c0-v11

Related Commands

ip address dhcp ip dhcp client ip dhcp-server show dhcp server debug dhcp

32.2.1.5 show dhcp server

Syntax

To show DHCP server information, run the following command: **show dhcp server**

Parameter

None

Default

None

Command Mode

EXEC

Usage Guidelines

The command is used to show DHCP server information.

Example

The following example shows DHCP server information:

switch#show dhcp sever DHCP server: 255.255.255 Leases: 0 Discovers: 62 Requests: 0 Declines: 0 Releases: 0 Offers: 0 Acks: 0 Naks: 0 Bad: 0 Subnet: 0.0.0, Domain name:

Related Commands

ip address dhcp ip dhcp client ip dhcp-server show dhcp lease

32.2.1.6 debug dhcp

Syntax

To check the operating state of the dhcp protocol, run the first one of the following two commands:

debug dhcp [detail] no debug dhcp [detail]

Parameter

Parameter	Description
detail	Displays the packet content of DHCP protocol.

Default

No information is shown by default.

Command Mode

EXEC

Usage Guidelines

The following example shows important information about dealing with DHCP:

switch#debug dhcp switch#2000-4-22 10:50:40 DHCP: Move to INIT state, xid: 0x7 2000-4-22 10:50:40 DHCP: SDISCOVER attempt # 1, sending 277 byte DHCP packet 2000-4-22 10:50:40 DHCP: Move to SELECTING state, xid: 0x7 2000-4-22 10:50:46 DHCP: SDISCOVER attempt # 2, sending 277 byte DHCPpacket 2000-4-22 10:50:46 DHCP: SDISCOVER attempt # 3, sending 277 byte DHCPpacket

Related Commands

show dhcp lease

32.3 IP Service Configuration Commands

32.3.1 IP Service Configuration Commands

The following are IP service configuration commands:

- clear tcp
- clear tcp statistics
- debug arp
- debug ip icmp
- debug ip packet
- debug ip raw
- debug ip tcp packet
- debug ip tcp transactions
- debug ip udp
- ip mask-reply
- ip mtu
- ip source-route
- ip tcp synwait-time
- ip tcp window-size
- ip unreachables
- show ip sockets
- show ip traffic
- show tcp
- show tcp brief
- show tcp statistics
- show tcp tcb

32.3.1.1 clear tcp

Syntax

It is used to delete a TCP connection. clear tcp {local host-name port remote host-name port | tcb address}

Parameter

Parameter	Description	
local host-name port	IP address and TCP port of the local host	
remote host-name port	IP address and TCP port of the remote host	
tcb address	TCB address of the to-be-deleted TCP connection	
	TCB is an identifier of TCP connection in the inner system, which can	
	be obtained by the command show tcp brief .	

Command Mode

Management mode

Usage Guidelines

The **clear tcp** command is mainly used to delete the terminated TCP connection. In some cases, such as faulty in communication lines, restarting TCP connection or the peer host, the TCP connections are terminated in fact. However, the system cannot obtain information about the terminated TCP connection because there is no communication on the TCP connections. In this case, you can run the **clear tcp** command to terminate these invalid TCP connections. The command **clear tcp local host-name port remote host-name port** is used to terminate the connections between the specified host's IP address/port and the remote host's IP address/port. The command **clear tcp tcb address** is used to terminate the TCP connections identified by the TCB address.

Example

The following example shows that the TCP connection between 192.168.20.22:23 and 192.168.20.120:4420 is deleted. The **show tcp brief** command is used to show the information about the local host and the remote host in TCP connection.

switch#show tcp brief

тсв	Local Address	Foreign Address	State				
0xE85AC8	192.168.20.22:23	192.168.20.120:4420	ESTABLISHED				
0xEA38C8	192.168.20.22:23	192.168.20.125:1583	ESTABLISHED				
switch#clear tcp local 192.168.20.22 23 remote 192.168.20.120 4420							
switch#show tcp brief							
тсв	Local Address	Foreign Address	State				

0xEA38C8 192.168.20.22:23 192.168.20.125:1583 ESTABLISHED

In the following example, the TCP connection whose TCB address is **0xea38c8** is deleted. The command **show tcp brief** displays the TCB address of the TCP connection.

switch#show tcp brief

	тсв	Local Address	Foreign Address	State		
	0xEA38C8	192.168.20.22:23	192.168.20.125:1583	ESTABLISHED		
	switch#clear tcp tcb 0xea38c8					
switch#show tcp brief						
	тсв	Local Address	Foreign Address	State		

Related Commands

show tcp show tcp brief show tcp tcb

32.3.1.2 clear tcp statistics

Syntax

It is used to clear the TCP statistics data.

clear tcp statistics

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

The following command is used to delete the TCP statistics data:

switch#clear tcp statistics

Related Command

show tcp statistics

32.3.1.3 debug arp

Syntax

It is used to display the ARP interaction information, such as sending ARP requests, receiving ARP requests, sending ARP response and receiving ARP response. When the switch cannot communicate with the host, the

KYLAND

command is used to analyze the ARP interaction. You can run the **no debug arp** command to stop displaying the relative information.

debug arp [*packet | delete*] no debug arp

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

switch#debug arp

switch#IP ARP: rcvd req src 192.168.20.116 00:90:27:a7:a9:c2, dst 192.168.20.111, vlan 10

IP ARP: req filtered src 192.168.20.139 00:90:27:d5:a9:1f, dst 192.168.20.82 00:

00:00:00:00:00, wrong cable, vlan 11

IP ARP: created an incomplete entry for IP address 192.168.20.77, vlan 10

IP ARP: sent req src 192.168.20.22 08:00:3e:33:33:8a, dst 192.168.20.77, vlan 10

IP ARP: rcvd reply src 192.168.20.77 00:30:80:d5:37:e0, dst 192.168.20.22, vlan 10

The first information indicates: the switch receives an ARP request on interface vlan 10; the IP address of the host that sends the ARP request is 192.168.20.116 and the MAC address of the host is 00:90:27:a7:a9:c2; the MAC address of the host 192.168.20.111 is IP ARP: rcvd req src 192.168.20.116 00:90:27:a7:a9:c2, dst 192.168.20.111, vlan 10.

The second information indicates that the switch receives an ARP request from 192.168.20.139 host on interface vlan 10. However, the interface is not in the network the host declares according to the interface configuration on the switch. The host may not be correctly configured. If the switch creates the ARP cache according to the information, it may not communicate with the host that is configured the same address and connected to the normal interface

IP ARP: req filtered src 192.168.20.139 00:90:27:d5:a9:1f, dst 192.168.20.82 00:

00:00:00:00:00, wrong cable, vlan 11

In the third information, to resolve the MAC address of host 192.168.20.77, the switch first creates an incomplete ARP item in the ARP cache. After receiving an ARP response, the MAC address is then added to the ARP cache. According to the location of the switch, the host connects the interface vlan 10.

IP ARP: created an incomplete entry for IP address 192.168.20.77, vlan 10

In the fourth information, the switch sends out the ARP request from the interface vlan 10. The IP address of the switch is 192.168.20.22. The MAC address of the interface is 08:00:3e:33:33:8a. The IP address of the requested host is 192.168.20.77. The fourth information is relative with the third information.

IP ARP: sent req src 192.168.20.22 08:00:3e:33:33:8a, dst 192.168.20.77, vlan 10

In the fifth information, the switch receives the ARP response on interface vlan 10 from host 192.168.20.77 to host 192.168.20.22. The switch is then informed that the MAC address of the host that returns the ARP response is 00:30:80:d5:37:e0. The information is relative to the third and fourth information.

IP ARP: rcvd reply src 192.168.20.77 00:30:80:d5:37:e0, dst 192.168.20.22, vlan 10

32.3.1.4 debug ip icmp

Syntax

It is used to display the ICMP interaction information. You can run the command **no debug ip icmp** to close the debugging output.

debug ip icmp

no debug ip icmp

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Usage Guidelines

The command is used to display the received or transmitted ICMP message, which helps to solve end-to-end connection problems. To know the detailed meaning of the command debug ip icmp, refer to RFC 792, "Internet Control Message Protocol".

Example

switch#debug ip icmp switch#ICMP: sent pointer indicating to 192.168.20.124 (dst was 192.168.20.22), len 48 ICMP: rcvd echo from 192.168.20.125, len 40 ICMP: sent echo reply, src 192.168.20.22, dst 192.168.20.125, len 40 ICMP: sent dst (202.96.209.133) host unreachable to 192.168.20.124, len 36 ICMP: sent dst (192.168.20.22) protocol unreachable to 192.168.20.124, len 36 ICMP: rcvd host redirect from 192.168.20.77, for dst 22.0.0.3 use gw 192.168.20.26, len 36 ICMP: rcvd dst (22.0.0.3) host unreachable from 192.168.20.26, len 36 ICMP: sent host redirect to 192.168.20.124, for dst 22.0.0.5 use gw 192.168.20.77, len 36 Details about the first information are shown in the following table:

ICMP: sent pointer indicating to 192.168.20.124 (dst was 192.168.20.22), len 48

Field	Description
ІСМР	Information about the ICMP message
Sent	Sending the ICMP message
pointer indicating	ICMP message which means that the original parameters of the IP
	message are incorrect and incorrect domain is pointed out
	The following are other types of ICMP message:
	echo reply
	dst unreachable:
	net unreachable
	host unreachable
	protocol unreachable
	port unreachable
	fragmentation needed and DF set
	source route failed
	net unknown
	destination host unknown
	source host isolated
	net prohibited
	host prohibited
	net tos unreachable
	host tos unreachable
	source quench
	redirect messages:
	net redirect
	host redirect
	net tos redirect

	host tos redirect
	echo
	router advertisement
	router solicitation
	time exceeded:
	ttl exceeded
	reassembly timeout
	parameter problem:
	pointer indicating
	option missed
	bad length
	timestamp
	timestamp reply
	information request
	information reply
	mask request
	mask reply
	If the ICMP type is unknown, the system is to display the values of the
	ICMP type and code.
to 192.168.20.124	Destination address of the ICMP message, which is also the source
	address of the original message that generates the ICMP message
(dst was 192.168.20.22)	Destination address of the original message that generates the ICMP
	message
len 48	Length of the ICMP message, excluding the length of the IP header

Details about the second information are shown in the following table: ICMP: rcvd echo from 192.168.20.125, len 40

Field	Description
rcvd	Receiving the ICMP message
echo	Echo request message, which is a type of the ICMP message

from 192.168.20.125 Source address of the ICMP message

Details about the third information are shown in the following table:

ICMP: sent echo reply, src 192.168.20.22, dst 192.168.20.125, len 40

Field	Description
src 192.168.20.22	Means that the source address of the ICMP message is 192.168.20.22.
dst 192.168.20.125	Means that the destination address of the ICMP message is 192.168.20.125.

According to the type of the ICMP message, the information that generates the ICMP message adopts different formats to display the message content.

For example, the **redirect** message of ICMP is printed in the following format:

ICMP: rcvd host redirect from 192.168.20.77, for dst 22.0.0.3 use gw 192.168.20.26, len 36

ICMP: sent host redirect to 192.168.20.124, for dst 22.0.0.5 use gw 192.168.20.77, len 36

In the first information, an ICMP redirect message from host 192.168.20.77 is received. Gateway 192.168.20.26 is recommended to reach the destination host 22.0.0.3. The length of the ICMP message is 36 bytes.

In the second information, the ICMP redirect message is sent to from host 192.168.20.124 to host 22.0.0.5 through gateway 192.168.20.77. The length of the ICMP message is 36 bytes.

The **dst unreachable** message of ICMP adopts the following format for printing:

ICMP: sent dst (202.96.209.133) host unreachable to 192.168.20.124, len 36

ICMP: rcvd dst (2.2.2.2) host unreachable from 192.168.20.26, len 36

In the first information, the switch cannot route a certain IP message, so it sends the **destination** (202.96.209.133) **unreachable** message to the source host (192.168.20.124). The length of the ICMP message is 36 bytes.

In the second information, after receiving an ICMP message from host192.168.20.26, the switch notifies host 192.168.20.26 that the destination address (2.2.2.2) cannot be reached. The length of the ICMP message is 36 bytes.

32.3.1.5 debug ip packet

Syntax

It is used to display the IP interaction information. The command **no debug ip packet** is used to stop displaying information.

debug ip packet [detail] [access-group ip-access-list-name] [interface type number] no debug ip packet

Parameter

Parameter	Description
	Description

detail	The parameter is used to export the protocol information about IP
	message encapsulation, such as protocol number, UDP, TCP port
	number and ICMP message type
ip-access-list-name	The parameter is used to filter the names of the IP access control
	list in the exported information
	Only the information about the IP message in the specified IP access
	control list can be exported.
access-group	The parameter is used to filter the names of the IP access control
	list in the exported information
	Only the information about the IP message in the specified IP access
	control list can be exported.
interface	The parameter is used to filter the port name of the exported
	information
	Only the information about the IP message satisfied the designated
	port can be exported.

Command Mode

Management mode

Usage Guidelines

The command is used to find the destination of each received or locally generated IP message, which helps to detect the reason of communication problems.

The command is used in the following cases:

- forwarded
- forwarded as the multicast message or the broadcast message
- addressing failure during message forwarding
- Sending the **redirect** message
- Rejected because of having the original routing option
- Rejected because of illegal IP options
- Original route
- Message sent from the local machine should be segmented, but the DF is reset.
- Receiving message
- Receiving IP segment
- Sending message

- Sending broadcast/multicast
- Addressing failure when message is generated locally
- Locally generated message is segmented
- Received message is filtered
- Transmitted message is filtered
- Link layer fails to be encapsulated (only for Ethernet)
- Unknown protocol

This command may export lots of information. You'd better use it when the switch is in the free state. Otherwise, the performance of the system will be badly affected. You are recommended to filter the output information through the IP access control list, enabling the system to export the useful message.

Command Mode

Management mode

Example

switch#debug ip packet

switch#IP: s=192.168.20.120 (vlan 10), d=19.0.0.9 (vlan 10), g=192.168.20.1, len=60, redirected

IP: s=192.168.20.22 (local), d=192.168.20.120 (vlan 10), g=192.168.20.120, len=56, sending

IP: s=192.168.20.120 (vlan 10), d=19.0.0.9 (vlan 10), g=192.168.20.1, len=60, forward

IP: s=192.168.20.81 (vlan 10), d=192.168.20.22 (vlan 10), len=56, rcvd

Field	Description
IP	Means that the information is about the IP message.
s=192.168.20.120 (vlan 10)	Source address of the IP message and the interface name that
	receives message (for message that is not locally generated)
d=19.0.0.9 (vlan 10)	Destination address of the IP message and the interface name that
	sends message (if routing is successful)
g=192.168.20.1	Next-hop destination address of the IP message, which may be the
	gateway's address or the destination address
len	Length of the IP message
redirected	Means that the routing switch is to send the ICMP redirect message
	to the source host. Other cases are shown in the following:
	forward the message is forwarded.
	forward directed broadcastthe message is forwarded as the

redirect message and the message will become the physical
broadcast on the transmitting interface.
unroutablethe message addressing fails and the message will be
dropped.
source routesource route
rejected source routethe current system does not support the
source route, therefore, the message with the IP source route is
declined.
bad optionsthe IP option is incorrect and the message will be
dropped.
need frag but DF setthe local message need be fragmented, while
the DF is set.
rcvdthe message is locally received.
rcvd fragmentthe message fragment is received.
sendingthe locally generated message is sent.
sending broad/multicastthe locally generated broadcast/muticast
message is sent.
sending fragment the IP message locally fragmented is sent.
denied by in aclIt is declined by the access control list on the
reception interface.
denied by out aclIt is declined by the transmitter access control on
the transmitter interface.
unknown protocol unknown protocol
encapsulation failedThe protocol fails to be encapsulated. It is only
for the Ethernet. When the message on the Ethernet is dropped
because of the ARP resolution failure, the information is displayed.

In the first information, the switch receives an IP message; the source address of the received message is 192.168.20.120; the message is from the network segment the vlan 10 interface connects; its destination address is 19.0.0.9. According to the routing table, the transmitter interface is vlan 10, the address of the gateway is 192.168.20.1 and the message length is 60 bytes. The gateway and the source host are directly connected in the same network, that is, the network that vlan 10 connects. In this case, the switch sends out the ICMP redirect message.

IP: s=192.168.20.120 (vlan 10), d=19.0.0.9 (vlan 10), g=192.168.20.1, len=60, redirected

In the second information, the transimmission of the ICMP redirect message is described. The source address is the local address 192.168.20.22. The destination address is 192.168.20.120. The message is directly sent from the vlan 10 interface to the destination address. Therefore, the gateway's address is the detination address 192.168.20.120. The length of the ICMP redirect message is 56 bytes.

IP: s=192.168.20.22 (local), d=192.168.20.120 (vlan 10), g=192.168.20.120, len=56, sending

The third information shows that the IP layer receives an IP message. The source address and destination address of the IP message are 192.168.20.120 and 19.0.0.9 respectively. The reception interface is vlan 10. By checking the routing table, the system finds that the IP message need be forwarded to the vlan10 interface. The length of the IP message is 60 bytes. The third information shows that the message shown in the first information will be forwarded after the system sends the ICMP redirect message.

IP: s=192.168.20.120 (vlan 10), d=19.0.0.9 (vlan 10), g=192.168.20.77, len=60, forward

The fourth information shows that the IP layer receives an IP message. The source address and destination address of the IP message are 192.168.20.81 and 192.168.20.22 respectively. The reception interface is vlan 10. The length of the IP message is 56 bytes. The IP message is locally received.

IP: s=192.168.20.81 (vlan 10), d=192.168.20.22 (vlan 10), len=56, rcvd

The following is an example about the output information after running the **debug ip packet detail** command. Only the newly added parts are described.

switch#debug ip packet detail

switch#IP: s=192.168.12.8 (vlan 10), d=255.255.255.255 (vlan 10), len=328, rcvd, UDP: src=68, dst=67

IP: s=192.168.20.26 (vlan 10), d=224.0.0.5 (vlan 10), len=68, rcvd, proto=89

IP: s=192.168.20.125 (vlan 10), d=192.168.20.22 (vlan 10), len=84, rcvd, ICMP: type=0, code = 0

IP: s=192.168.20.22 (local), d=192.168.20.124 (vlan 10), g=192.168.20.124, len=40, sending, TCP: src=1024, dst=23, seq=75098622,

ack=161000466, win=17520, ACK

Field	Description
UDP	Name of the protocol, such as UDP, ICMP and TCP
	Other protocols are represented by their protocol number.
type, code	Type and code of the ICMP message
src, dst	Source address and destination address of the UDP message and the
	TCP message
seq	Sequence number of the TCP message
ack	Acknowledge number of the TCP message
win	Window value of the TCP message
АСК	If ACK is set in the control bit of the TCP message, the acknowledge

number is valid. Other control bits include SYN, URG, FIN, PSH and RST.

The first information indicates that the UDP message is received. The source port is port 68 and the destination port is port 67.

IP: s=192.168.12.8 (vlan 10), d=255.255.255.255 (vlan 10), len=328, rcvd, UDP: src=68, dst=67

The second information indicates that the protocol number of the received message is 89.

IP: s=192.168.20.26 (vlan 10), d=224.0.0.5 (vlan 10), len=68, rcvd, proto=89

The third information indicates that the ICMP message is received. Both the type and the code of the message are represented by the number **0**.

IP: s=192.168.20.125 (vlan 10), d=192.168.20.22 (vlan 10), len=84, rcvd, ICMP: type=0, code = 0

The fourth information indicates that the TCP message is sent. The source port and destination port are port 1024 and port 23 respectively. The sequence number and the acknowledge number are 75098622 and 161000466 respectively. The size of the receiption window is 17520. The ACK logo is set. For details, refer to RFC 793— Transmission Control Protocol.

IP: s=192.168.20.22 (local), d=192.168.20.124 (vlan 10), g=192.168.20.124, len=40, sending, TCP: src=1024, dst=23, seq=75098622, ack=161000466, win=17520, ACK

The access control list is described in the following. For example, if the messages with the source address 192.168.20.125 require to be displayed, you need to define the standard access control list to permit only the IP message whose source address is 192.168.20.125. You then run the command **debug ip packet** to use the access control list.

switch#config

switch_config#ip access-list standard abc

switch_config_std_nacl#permit 192.168.20.125

switch_config_std_nacl#exit

switch_config#exit

switch#debug ip packet abc

switch#IP: s=192.168.20.125 (vlan 101), d=192.168.20.22 (vlan 101), len=48, rcvd

In the previous commands, the standard access control list is used. You can also use the extensible access control list.

Related Command

debug ip tcp packet

32.3.1.6 debug ip raw

Syntax

It is used to display the IP interaction information. Run the command **no debug ip raw** to stop displaying the information.

debug ip raw [detail] [access-group access-list-group] [interface type number]

no debug ip raw

Parameter

Parameter	Description
detail	(optional) The parameter is used to export the protocol information about IP message encapsulation, such as protocol number, UDP, TCP port number and ICMP message type
access-list-group	(optional) The parameter is used to filter the names of the IP access control list in the exported information Only the information about the IP message in the specified IP access control list can be exported.
interface	(optional) The parameter is used to filter the port name of the exported information Only the information about the IP message satisfied the designated port can be exported.

Command Mode

Management mode

Usage Guidelines

The command is used to find the destination of each received or locally generated IP message, which helps to detect the reason of communication problems.

The command is used in the following cases:

- Forwarded
- Forwarded as the multicast message or the broadcast message
- Addressing failure during message forwarding
- Sending the **redirect** message
- Rejected because of having the original routing option

- Rejected because of illegal IP options
- Original route
- Message sent from the local machine should be segmented, but the DF is reset.
- Receiving message
- Receiving IP segment
- Sending message
- Sending broadcast/multicast
- Addressing failure when message is generated locally
- Locally generated message is segmented
- Received message is filtered
- Transmitted message is filtered
- Link layer fails to be encapsulated (only for Ethernet)
- Unknown protocol

This command may export lots of information. You'd better use it when the switch is in the free state. Otherwise, the performance of the system will be badly affected. You are recommended to filter the output information through the IP access control list, enabling the system to export the useful message.

Example

Similar to the **debug ip packet** command

Related Command

debug ip tcp packet

32.3.1.7 debug ip tcp packet

Syntax

It is used to display the TCP message. To stop displaying the TCP message, run the command **no debug ip tcp packet**.

debug ip tcp packet no debug ip tcp packet

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

switch#debug ip tcp packet

switch#tcp: O ESTABLISHED 192.168.20.22:23 192.168.20.125:3828 seq 50659460

DATA 1 ACK 3130379810 PSH WIN 4380

tcp: I ESTABLISHED 192.168.20.22:23 192.168.20.125:3828 seq 3130379810

DATA 2 ACK 50659460 PSH WIN 16372

tcp: O ESTABLISHED 192.168.20.22:23 192.168.20.125:3828 seq 50659461

DATA 50 ACK 3130379812 PSH WIN 4380

tcp: O FIN_WAIT_1 192.168.20.22:23 192.168.20.125:3828 seq 50659511

ACK 3130379812 FIN WIN 4380

tcp: I FIN_WAIT_1 192.168.20.22:23 192.168.20.125:3828 seq 3130379812

ACK 50659511 WIN 16321

tcp: I FIN_WAIT_1 192.168.20.22:23 192.168.20.125:3828 seq 3130379812

ACK 50659512 WIN 16321

tcp: I FIN_WAIT_2 192.168.20.22:23 192.168.20.125:3828 seq 3130379812

ACK 50659512 FIN WIN 16321

tcp: O TIME_WAIT 192.168.20.22:23 192.168.20.125:3828 seq 50659512

ACK 3130379813 WIN 4380

tcp: I LISTEN 0.0.0.0:23 0.0.0.0:0 seq 3813109318

DATA 2 ACK 8057944 PSH WIN 17440

tcp: O LISTEN 0.0.0.0:23 0.0.0.0:0 seq 8057944

RST

Field	Description
tcp:	Information about the TCP message
0	Sending the TCP message
ESTABLISHED	Current state of the TCP connection
	For the description of the TCP connection state, refer to the description of the command debug ip tcp transactions .
192.168.20.22:23	Means that the source address of the message is 192.168.20.22 and the source port is port 23.

192.168.20.125:3828	Means that the destination address of the message is 192.168.20.125 and the destination port is port 3828.
seq 50659460	Means that the sequence number of the message is 50659460.
DATA 1	Means that the number of valid data bytes contained in the message is 1.
ACK 3130379810	Means that the acknowledge number of the message is 3130379810.
PSH	Means that PSH in the control bits of the message is set. Other control bits include ACK, FIN, SYN, URG and RST.
WIN 4380	It is used to notify the peer reception end of the cache size. The current cache size is 4380 sizes.
1	Receiving the TCP message

If the previous fields are not displayed, the field in the TCP message does not have the valid value.

Related Command

debug ip tcp transactions

32.3.1.8 debug ip tcp transactions

Syntax

It is used to display the TCP interaction information, such as the change of the TCP connection state. Run the command **no debug ip tcp transactions** to stop displaying the information.

debug ip tcp transactions

no debug ip tcp transactions

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

switch#debug ip tcp transactions

switch#TCP: rcvd connection attempt to port 23

KYLAND

TCP: TCB 0xE88AC8 created
TCP: state was LISTEN -> SYN_RCVD [23 -> 192.168.20.125:3828]
TCP: sending SYN, seq 50658312, ack 3130379657 [23 -> 192.168.20.125:3828]
TCP: state was SYN_RCVD -> ESTABLISHED [23 -> 192.168.20.125:3828]
TCP: connection closed by user, state was LISTEN [23 -> 0.0.0.0:0]
TCP: state was TIME_WAIT -> CLOSED [23 -> 192.168.20.125:3827]
TCP: TCB 0xE923C8 deleted
TCP: TCB 0xE7DBC8 created
TCP: connection to 192.168.20.124:513 from 192.168.20.22:1022, state was CLOSED to SYN_SENT
TCP: sending SYN, seq 52188680, ack 0 [1022 -> 192.168.20.124:513]
TCP: state was SYN_SENT -> ESTABLISHED [1022 -> 192.168.20.124:513]
TCP: rcvd FIN, state was ESTABLISHED -> CLOSE_WAIT [1022 -> 192.168.20.124:513]
TCP: connection closed by user, state was CLOSE_WAIT [1022 -> 192.168.20.124:513]
TCP: sending FIN [1022 -> 192.168.20.124:513]
TCP: connection closed by user, state was LAST_ACK [1022 -> 192.168.20.124:513]
TCP: state was LAST ACK -> CLOSED [1022 -> 192.168.20.124:513]

_ .

TCP: TCB 0xE7DBC8 deleted

Field	Description
тср:	Means that the TCP interaction information is displayed.
rcvd connection attempt to	Means that the connection request from peer port 23 (telnet port) is
port 23	received.
TCB 0xE88AC8 created	Means a new TCP connection control block is generated and its logo is
	0xE88AC8.
state was LISTEN ->	Means that the state of the TCP state machine changes from the
SYN_RCVD	LISTEN state to the SYN_RCVD state.
	The TCP state may be one of the following:
	LISTENwaiting for the TCP connection request from any remote
	host
	SYN_SENTthe connection request for creating TCP connection
	negotiation has been sent and the reply is being waited.

SYN RCVD---the connection request from the peer has been received and the acknowledgement information and its own connection request have also been sent out; the acknowledge information about the peer's connection is being waited. ESTABLISHED---the connection is successful; the data is being transmitted; the data of the upper application can be received and sent. FIN_WAIT_1---the connection termination request has been sent to the peer; the acknowledgement information and the connection termination request from the peer are being waited. FIN_WAIT_2---the connection termination request has been sent to the peer and the acknowledgement information from the peer has been received; the connection termination request from the peer is being waited. CLOSE_WAIT--- the connection termination request from the peer has been received and the acknowledgement information has been sent out; the local user is being waited to close the connection. Once the user demands to close the connection, the system sends out the connection termination request. CLOSING--- the connection termination request has been sent to the peer and the connection termination request from the peer has been received and the acknowledgement information has been sent out; the system is waiting for the local connection termination request acknowledge from the peer. LAST_ACK---The system has received the connection termination request from the peer and acknowledged it; the system has already sent out connection termination request; the acknowledge is being waited for. TIME_WAIT---the period when the system waits for the peer to receive the acknowledgement of the connection termination request CLOSED----the connection is closed. For details, refer to RFC 793, Transmission Control Protocol.

Г

٦

[23 ->	The first field (23) in the bracket means the local TCP port.
192.168.20.125:3828]	The second field (192.168.20.125) in the bracket means the remote IP
	address.
	The third field (3828) in the bracket means the remote TCP port.
sending SYN	Means a connection request message is sent out (SYN in the control
	bits of the TCP header is set). Other TCP control bits include SYN, ACK,
	FIN, PSH, RST and URG.
seq 50658312	Means that the sequence number for sending the message is
	50658312.
ack 3130379657	Means that the acknowledgement number for sending the message is
	3130379657.
rcvd FIN	Means that the connection termination request is received (FIN in the
	control bits of the TCP header is set).
connection closed by user	Means that the upper application requires closing the TCP
	connection.
connection timed out	Means that connection timeout is closed.

Related Command

debug ip tcp packet

32.3.1.9 debug ip udp

Syntax

It is used to display the UDP interaction information. Run the command **no debug ip udp** to stop displaying the information.

debug ip udp no debug ip udp

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

switch#debug ip udp

switch#UDP: rcvd src 192.168.20.99(520), dst 192.168.20.255(520), len = 32

UDP: sent src 192.168.20.22(20001), dst 192.168.20.43(1001), len = 1008

Field	Description
UDP	Means that the information is about the UDP message.
rcvd	Means that the message is received.
sent	Means that the message is sent.
src	Means the source IP address of the UDP message and the UDP port.
dst	Means the destination IP address of the UDP message and the UDP port.
len	Means the length of the UDP message.

The first line in the previous information shows that a UDP message is received. The UDP message is sent from host 192.168.20.99. Both the source port and the destination port are port 520. The destination address is 192.168.20.255. The length of the message is 32 bytes.

The second line in the previous information shows that a UDP message is sent. The local address and the destination address are 192.168.20.22 and 192.168.20.43 respectively. The source port and the destination port are port 20001 and port 1001 respectively. The length of the message is 1008 bytes.

32.3.1.10 ip mask-reply

Syntax

It is used to enable the switch to reply the mask request of the IP address on the designated interface. Run the command **no ip mask-reply** to disable the function.

ip mask-reply no ip mask-reply

default ip mask-reply

Parameter

The command has no parameter or keyword.

Default

The mask request of the IP address is not replied.

Command Mode

Interface configuration mode

Example

interface vlan 11

ip mask-reply

32.3.1.11 ip mtu

Syntax

It is used to set the MTU of the IP message. To reuse **MTUDefault**, run the command **no ip mtu**. **ip mtu** bytes **no ip mtu**

Parameter

Parameter	Description
bytes	Maximum transmission unit of the IP message, which is calculated by
	byte

Default

It varies with different physical media of the interface. It is the same as MTU. The minimum value is 68 bytes.

Command Mode

Interface configuration mode

Usage Guidelines

If the length of the IP message exceeds IP MTU configured on the interface, the switch fragments the message. All devices connecting on the same physical media need be configured the same MTU. The MTU affects the IP MTU. If the value of IP MTU is the same as that of the MTU, the value of IP MTU automatically changes to the new value of the MTU when the MTU value changes. The change of the IP MTU does not affect the MTU.

The minimum value of IP MTU is 68 bytes and the maximum value of IP MTU cannot exceed the MTU value configured on the interface.

Example

The following example shows that IP MTU on interface vlan 10 is set to 200:

interface vlan 10

ip mtu 200

Related Command

mtu

32.3.1.12 ip source-route

Syntax

It is used to enable the routing switch to process the IP message with the source IP route. To enable the routing switch to drop the IP message with the source IP route, run the command **no ip source-route**.

ip source-route

no ip source-route

Parameter

None

Default

The IP message with the source IP route is processed.

Command Mode

Global configuration mode

Example

The following command enables the routing switch to process the IP message with the source IP route.

ip source-route

Related Command

ping

32.3.1.13 ip tcp synwait-time

Syntax

It is used to set the timeout time, which is used in the case when the switch waits for the successful TCP connection. To resume to the default time, run the command **no ip tcp synwait-time**.

ip tcp synwait-time seconds

no ip tcp synwait-time

Parameter

Parameter	Description
seconds	Time for waiting for the TCP connection, which ranges from 5 to 300 seconds
	Its default value is 75 seconds.

Default

75 seconds

Command Mode

Global configuration mode

Usage Guidelines

When the switch originates the TCP connection, if the TCP connection is unsuccessful after the waiting time, the switch considers that the connection fails and sends the result to the upper application. You can set the waiting time for the successful TCP connection. The default value is 75 seconds. The option has nothing with the TCP connection message forwarded by the switch. However, it is relevant with the local TCP connection of the switch.

To know the current value of the waiting time, run the command **ip tcp synwait-time ?**. The value in the square bracket is the current value.

Example

The following example shows that the waiting time of the TCP connection is set to 30 seconds:

switch_config#ip tcp synwait-time 30

32.3.1.14 ip tcp window-size

Syntax

It is used to set the size of the TCP window. To resume to the default value, run the command **no ip tcp** window-size.

ip tcp window-size bytes

no ip tcp window-size

Parameter

Parameter	Description
bytes	Size of the window whose unit is second
	The maximum size is 65535 bytes. The default size is 2000 bytes.

Default

2000 bytes

Command Mode

Global configuration mode

Usage Guidelines

Do not hastly modify the default value of the window size unless you have a definite purpose.

Example

The following example shows that the size of the TCP window is set to 6000 bytes:

switch_config#ip tcp window-size 6000

32.3.1.15 ip unreachables

Syntax

It is used to enable the switch to send the ICMP unreachable message. To stop sending the message, run the command **no ip unreachables**.

ip unreachables

no ip unreachables

Parameter

The command has no parameter or keyword.

Default

The ICMP unreachable message is sent.

Command Mode

Interface configuration mode

Usage Guidelines

When the switch forwards the IP message, the message is dropped if the relevant route is not in the routing table. In this case, the switch sends the ICMP unreachable message to the source host. According to the information in the ICMP unreachable message, the source host promptly detects the fault and removes it.

Example

The following example shows that the interface vlan 10 is set to send the ICMP unreachable message:

interface vlan 10

ip unreachables

32.3.1.16 show ip sockets

Syntax

It is used to display the socket information. show ip sockets[socketid]

Parameter

Paramete	r	Description
socketid	Show	w details of a socket

Command Mode

Management mode

Example

switch#show ip sockets

Proto	Local	Port	Remote	Port	In	Out
17	0.0.0.0	0	0.0.0.0	0	161	0
6	0.0.0.0	0	0.0.0.0	0	513	0
17	0.0.0.0	0	0.0.0.0	0	1698	0
17	0.0.0.0	0	0.0.0.0	0	69	0

6	0.0.0.0	0	0.0.0.0	0	23	0
17	0.0.0.0	0	0.0.0.0	0	137	122590

Field	Description
Proto	IP number
	The protocol number of UDP is 17 and the number of TCP is 6.
Remote	Remote address
Port	Remote port
Local	Local address
Port	Local port
In	Total number of the received bytes
Out	Total number of the transmitted bytes

32.3.1.17 show ip traffic

Syntax

It is used to display the statistics information about the IP traffic.

show ip traffic

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

switch#show ip traffic

IP statistics:

Rcvd: 0 total, 0 local destination, 0 delivered

0 format errors, 0 checksum errors, 0 bad ttl count

0 bad destination address, 0 unknown protocol, 0 discarded

0 filtered , 0 bad options, 0 with options Opts: 0 loose source route, 0 record route, 0 strict source route 0 timestamp, 0 router alert, 0 others Frags: 0 fragments, 0 reassembled, 0 dropped 0 fragmented, 0 fragments, 0 couldn't fragment Bcast: 0 received, 0 sent Mcast: 0 received, 0 sent Sent: 230 generated, 0 forwarded 0 filtered, 0 no route, 0 discarded **ICMP** statistics: Rcvd: 0 total, 0 format errors, 0 checksum errors 0 redirect, 0 unreachable, 0 source quench 0 echos, 0 echo replies, 0 mask requests, 0 mask replies 0 parameter problem, 0 timestamps, 0 timestamp replies 0 time exceeded, 0 router solicitations, 0 router advertisements Sent: 0 total, 0 errors 0 redirects, 0 unreachable, 0 source quench 0 echos, 0 echo replies, 0 mask requests, 0 mask replies O parameter problem, O timestamps, O timestamp replies 0 time exceeded, 0 router solicitations, 0 router advertisements

UDP statistics:

Rcvd: 28 total, 0 checksum errors, 22 no port, 0 full sock Sent: 0 total

TCP statistics:

Rcvd: 0 total, 0 checksum errors, 0 no port Sent: 3 total

IGMP statistics:

Rcvd: 0 total, 0 format errors, 0 checksum errors

0 host queries, 0 host reports

Sent: 0 host reports

ARP statistics:

Rcvd: 8 total, 7 requests, 1 replies, 0 reverse, 0 other

Sent: 5 total, 5 requests, 0 replies (0 proxy), 0 reverse

Field	Description
format errors	Means that the format of the message is incorrect, such as the
	incorrect length of the IP header.
bad hop count	Means that the TTL value decreases to 0 when the routing switch
	forwards the message. In this case, the message will be dropped.
no route	Means that the routing switch does not have relevant route message.

32.3.1.18 show tcp

Syntax

It is used to display the state of all TCP connections.

show tcp

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

switch#show tcp

TCB 0xE9ADC8

Connection state is ESTABLISHED, unread input bytes: 934

Local host: 192.168.20.22, Local port: 1023

Foreign host: 192.168.20.124, Foreign port: 513

Enqueued bytes for transmit: 0, input: 934 mis-ordered: 0 (0 packets)

KYLAND

Timer	Starts	Wakeups	Next(ms)
Retrans	33	1	0
TimeWait	0	0	0
SendWnd	0	0	0
KeepAlive	102	0	7199500

iss:	29139463	snduna:	29139525	sndnxt:	29139525	sndwnd:	17520
irs: 7	09124039	rcvnxt: 70	9205436 r	cvwnd:	4380		

SRTT: 15 ms, RXT: 2500 ms, RTV: 687 ms

minRXT: 1000 ms, maxRXT: 64000 ms, ACK hold: 200 ms

Datagrams (max data segment is 1460 bytes):

Rcvd: 102 (out of order: 0), with data: 92, total data bytes: 81396

Sent: 104 (retransmit: 0), with data: 31, total data bytes: 61

Field	Description
TCB 0xE77FC8	Internal identifier of the TCP connection control block
Connection state	s Currrent state of the TCP connection
ESTABLISHED	The TCP connection may be in one of the following state:
	LISTENwaiting for the TCP connection request from any remote
	host
	SYN_SENTthe connection request has been sent and the reply is
	being waited.
	SYN_RCVDthe connection request from the peer has been received
	and the acknowledgement information and its own connection
	request have also been sent out; the acknowledge information about
	the peer's connection is being waited.
	ESTABLISHEDthe connection is successful; the data is being
	transmitted; the data of the upper application can be received and
	sent.
	FIN_WAIT_1the connection termination request has been sent to

	the peer; the acknowledgement information and the connection
	termination request from the peer are being waited.
	FIN_WAIT_2the connection termination request has been sent to
	the peer and the acknowledgement information from the peer has
	been received; the connection termination request from the peer is
	being waited.
	CLOSE_WAIT the connection termination request from the peer has
	– been received and the acknowledgement information has been sent
	out; the local user is being waited to close the connection. Once the
	user demands to close the connection, the system sends out the
	connection termination request.
	CLOSING the connection termination request has been sent to the
	peer and the connection termination request from the peer has been
	received and the acknowledgement information has been sent out;
	the system is waiting for the local connection termination request
	acknowledge from the peer.
	LAST_ACKThe system has received the connection termination
	request from the peer and acknowledged it; the system has already
	sent out connection termination request; the acknowledgement is
	being waited for.
	TIME_WAITthe period when the system waits for the peer to
	receive the acknowledgement of the connection termination request
	CLOSEDthe connection is closed.
	For details, refer to RFC 793, Transmission Control Protocol.
unread input bytes:	Data that is processed by the lower-layer TCP and the upper
	application has not received
Local host:	Local IP address
Local port:	Local TCP port
Foreign host:	Remote IP address
Foreign port:	Remote TCP port
Enqueued bytes for	Bytes in the transmitter queue, including the data that is sent but not

transmit:	yet acknowledged and the data that is not sent
input:	Bytes in the reception queue
	After sorting, these data waits for the upper application to accept.
mis-ordered:	Number of bytes and messages in the misordered queue
	After other data is received, these data can enter the receiption
	queue in turn and then can be received by the upper application.
	For example, after messages 1, 2, 4, 5 and 6 are received,
	messages 1 and 2 can enter the receiption queue, but messages
	4, 5 and 6 have to enter the misordered queue and wait for
	message 3.

After that, the information about the timer of the current connection is displayed, including its startup times, timeout times and the next-time timeout time. The value 0 means that the timer does not run currently. Each connection has its own unique timer. The timeout times is less than the startup times because the timer may be reset in its process. For example, when the retransmission timer works, the system will receive the acknowledgements for all data from the peer. In this case, the retransmission timer stops running.

Timer	Starts	Wakeups	Next(ms)
Retrans	33	1	0
TimeWait	0	0	0
SendWnd	0	0	0
KeepAlive	102	0	7199500

102 0	/155500
Field	Description
Timer	Name of the timer
Starts	Startup times of the timer
Wakeups	Timeout times of the timer
Next(ms)	Next-time timeout time (unit: ms)
	The value 0 means the timer does not run.
Retrans	Retransmission timer, which is used to trigger resending data
	The timer is started up after the data is sent. If the data is not
	acknowledged by the peer within the timeout time, the data will be
	resent.
TimeWait	Time Waiting timer, which is used to know that the peer has already

	received the acknowledgement of the connection termination
	request.
SendWnd	Timer of the transmission window, which is used to asure that the
	transmission wind resume to the normal size after the TCP
	acknowledgement information is dropped
KeepAlive	Keep-alive timer, which is used to asure that the communication link
	is in normal state and the peer is still in the connection state
	It triggers the testing message to be sent for testing the state of the
	communication link and the peer.

After the timer is displayed, the sequence number of the TCP connection is displayed. TCP uses the sequence number to gurantee reliable and orderly data transmission. The local or remote host can control the traffic and send the acknowledgement information according to the sequence number.

iss: 29139463 snduna: 29139525 sndnxt: 29139525 sndwnd: 17520

irs: 709124039 rcvnxt: 709205436 rcvwnd: 4380

Field	Description
iss:	Sequence number of original transmission
snduna:	Sequence number of the first byte in the data that is already sent but
	whose acknowledgement information has not been received
sndnxt:	Transmission sequence number of the first data in the data that is
	sent later
sndwnd:	TCP window size of the remote host
irs:	Original receiption sequence number, that is, original transmission
	sequence number of the remote host
rcvnxt:	Receiption sequence number that is acknowledged recently
rcvwnd:	TCP window size of the local host

The transmission time recorded by the local host is displayed afterwards. The system can adapt itself to different networks according to the transmission time.

SRTT: 15 ms, RXT: 2500 ms, RTV: 687 ms

minRXT: 1000 ms, maxRXT: 64000 ms, ACK hold: 200 ms

Field	Description
SRTT:	Round-trip time after smooth processing

RXT:	Retransmission timeout time
RTV:	Change value of the round-trip time
MinRXT:	Permissible minimum retransmission timeout time
MaxRXT:	Permissible maximum retransmission timeout time
ACK hold:	Maximum delay time when the acknowledgement is delayed for being sent together with the data

Datagrams (max data segment is 1460 bytes):

Rcvd: 102 (out of order: 0), with data: 92, total data bytes: 81396

Sent: 104 (retransmit: 0), with data: 31, total data bytes: 61

Field	Description
max data segment is	Maximum length of the data segment which is permitted by the connection
Rcvd:	Number of messages that the local host receives during the connection procedure, including the number of the misordered messages
with data:	Number of messages that contain valid data
total data bytes:	Number of data bytes contained by the message
Sent:	Number of messages that are sent or resent by the local host during the connection procedure
with data:	Number of messages that contain valid data
total data bytes:	Number of data bytes contained by the message

Related Command

show tcp brief show tcp tcb

32.3.1.19 show tcp brief

Syntax

It is used to display the brief information about the TCP connection.

show tcp brief [all]

Parameter

Parameter	Description
all	An optional parameter, which means that all ports are displayed
	If the parameter is not entered, the system does not display the ports
	in the LISTEN state.

Command Mode

Management mode

Example

switch#show tcp brief

тсв	Lo	ocal Address Forei		eign Address	State	
0xE9ADC8	1	.92.168.20.22:1023 192.16		68.20.124:513	ESTABLISHED	
0xEA34C8	19	92.168.20.22:23 192.16		68.20.125:1472	ESTABLISHED	
		Field			Description	
		тсв		Internal identifie	er of the TCP connection	
		Local Address		Local IP address	and the TCP port	

Local Address	Local IP address and the TCP port
Foreign Address	Remote IP address and the TCP port
State	State of the connection
	For details, refer to the description of the show tcp command.

Related Command

show tcp show tcp tcb

32.3.1.20 show tcp statistics

Syntax

It is used to display the TCP statistics data.

show tcp statistics

Parameter

The command has no parameter or keyword.

Command Mode

Management mode

Example

switch#show tcp statistics

Rcvd: 148 Total, 0 no port

0 checksum error, 0 bad offset, 0 too short

131 packets (6974 bytes) in sequence

0 dup packets (0 bytes)

0 partially dup packets (0 bytes)

0 out-of-order packets (0 bytes)

0 packets (0 bytes) with data after window

0 packets after close

0 window probe packets, 0 window update packets

0 dup ack packets, 0 ack packets with unsend data

127 ack packets (247 bytes)

Sent: 239 Total, 0 urgent packets

6 control packets

123 data packets (245 bytes)

0 data packets (0 bytes) retransmitted

110 ack only packets (101 delayed)

0 window probe packets, 0 window update packets

4 Connections initiated, 0 connections accepted, 2 connections established

3 Connections closed (including 0 dropped, 1 embryonic dropped)

5 Total rxmt timeout, 0 connections dropped in rxmt timeout

1 Keepalive timeout, 0 keepalive probe, 1 Connections dropped in keepalive

Field		Description
	Rcvd:	Statistics data about the messages received by the routing switch
	Total	Total number of the received messages

Number of messages showing the destination port does not exist
Number of messages showing that sum check is incorrect
Number of messages showing that the data offset is incorrect
Number of messages showing that the message length is less than
the minimum effective length
Number of messages that are received in turn
Number of received duplicate messages
Number of received messages that are partly duplicated
Number of misordered messages
Number of messages whose data exceeds the receiption window
Number of messages that are received after the connection is closed
Number of received messages about window probe
Number of received messages about window update
Number of received messages that are duplicately acknowledged
Number of received messages that are acknowledged but has not
been sent
Number of received messages that are acknowledged
Statistics data about messages that are sent by the routing switch
Total number of the transmitted messages
Number of the transmitted urgent messages
Number of the transmitted control messages (SYN, FIN or RST)
Number of the transmitted data messages
Number of the retransmitted data messages
Number of the purely acknowledged messages
Number of the transmitted window probe messages

window update packets	Number of the transmitted window update messages
Connections initiated	Number of the locally initiated connections
connections accepted	Number of the locally received connections
connections established	Number of the locally established connections
Connections closed	Number of the locally closed connections
Total rxmt timeout	Total number of retransmission timeouts
Connections dropped in	Number of the connections dropped because of retransmission
rxmit timeout	timeout
Keepalive timeout	Number of Keepalive timeouts
keepalive probe	Number of the transmitted messages for keepalive probe
Connections dropped in	Number of the connections dropped because of Keepalive
keepalive	

Related Command

clear tcp statistics

32.3.1.21 **show tcp tcb**

Syntax

It is used to display the state of a certain TCP connection. **show tcp tcb address**

Parameter

Parameter	Description
address	TCB address of the TCP connection
	TCB is an identifier of the TCP connection in the system, which can be
	obtained by the command show tcp brief .

Command Mode

Management mode

KYLAND

Example

For detailed explanation, refer to the command **show tcp**. switch_config#show tcp tcb 0xea38c8

TCB 0xEA38C8

Connection state is ESTABLISHED, unread input bytes: 0 Local host: 192.168.20.22, Local port: 23

Foreign host: 192.168.20.125, Foreign port: 1583

Enqueued bytes for transmit: 0, input: 0 mis-ordered: 0 (0 packets)

Timer	Starts	Wakeups	Next(ms)	
Retrans	4	0	0	
TimeWait	0	0	0	
SendWnd	0	0	0	
KeepAlive	+5	0	6633000	

iss:	10431492	snduna:	10431573	sndnxt:	10431573	sndwnd:	17440
irs: 9	15717885	rcvnxt: 91	5717889 r	rcvwnd:	4380		

SRTT: 2812 ms, RXT: 18500 ms, RTV: 4000 ms

minRXT: 1000 ms, maxRXT: 64000 ms, ACK hold: 200 ms

Datagrams (max data segment is 1460 bytes): Rcvd: 5 (out of order: 0), with data: 1, total data bytes: 3 Sent: 4 (retransmit: 0), with data: 3, total data bytes: 80

Related Command

show tcp show tcp brief

32.3.2 IP Access List Configuration Commands

32.3.2.1 deny

Syntax

To set conditions in a named IP access list that will deny packets, use the deny command in access list configuration mode. To remove a deny condition from an access list, use the no form of this command.

deny source [source-mask] [log] [location]

no deny source [source-mask] [log]

deny protocol source source-mask destination destination-mask[[precedence precedence] [tos tos] [log] [offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment] [not-fragment] [offset-not-zero] [log]]

no deny protocol source source-mask destination destination-mask[[precedence precedence] [tos tos] [log]
[offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment]
[not-fragment] [offset-not-zero] [log]]

Internet Control Message Protocol (ICMP)

deny icmp source source-mask destination destination-mask [icmp-type] [**precedence** precedence] [**tos** tos] [log] Internet Group Management Protocol (IGMP)

deny igmp source source-mask destination destination-mask [igmp-type] [**precedence** precedence] [**tos** tos] [log] Transmission Control Protocol (TCP)

deny tcp source source-mask [operator port] destination destination-mask [operator port] [**established**] [**precedence** precedence] [**tos** tos] [log]

User Datagram Protocol (UDP)

deny udp source source-mask [operator port] destination destination-mask [operator port] [**precedence** precedence] [**tos** tos] [log]

Parameter

Parameter	Description
protocol	Stands for the protocol name or IP protocol number. It can be one of
	these keywords icmp, igmp, igrp, ip, ospf, tcp or udp, or be an integer
	(protocol number) from 0 to 255. To match up with any Internet
	protocols (include ICMP, TCP and UDP), use the keyword ip. Some
	protocols allow further limitations as described later.
source	Stands for a source network or host number. There are two methods to
	designate the source: 32-bit binary number or a decimal number
	separated by four points. The keyword any is used as the shortened forms
	of the source and the source mask of 0.0.0.0 0.0.0.0.
source-mask	Stands for the source address of the network mask. The keyword any is

	used as the shortened forms of the source and the source mask of 0.0.0.0 0.0.0.0.
destination	Number of the network or host to which the packet is being sent. There are two alternative ways to specify the destination: Use a 32-bit quantity in four-part dotted-decimal format. Use the any keyword as an abbreviation for the destination and destination-wildcard of 0.0.0.0 0.0.0.0.
destination-mask	Destination address network mask. Use the any keyword as an abbreviation for the destination address and destination address mask of 0.0.0.0.0.0.0.
precedence precedence	(Optional) Packets can be filterd by priority, as specified by a number from 0 to 7.
tos tos	(Optional) Packets can be filtered by type of service (ToS) level, as specified by a number from 0 to 15.
icmp-type	(Optional) ICMP packets can be filtered by ICMP message type. The type is a number from 0 to 255.
igmp-type	(Optional) IGMP packets can be filtered by IGMP message type or message name. A message type is a number from 0 to 15.
operator	(Optional) Compares source or destination ports. The operations include the eq operation. If the operator follows the source parameter and the source-mask parameter, it must match up with the source port. If the operator follows the destination parameter and the destination-mask parameter, it must match up with the destination port.
port	(Optional) The decimal number or name of a TCP or UDP port. A port number is a number from 0 to 65535.
established	(Optional) One established connection only for TCP protocol. If the TCP data packet has ACK or RST, the match is established; otherwise, the TCP data packet will be initialized.
log	(Optional) log record.

location

Insert rule on the designated num location.

Command Mode

IP Access List Configuration Mode

Usage Guidelines

Use this command following the ip access-list command to specify conditions under which a packet cannot pass the named access list. The time-range keyword allows you to identify a time range by name. The time-range, absolute, and periodic commands specify when this deny statement is in effect.

Note:

After initially establishing an access list, any subsequent adding content (which can be input by terminal) is put in the bottom of the list.

Example

The following example denies the network range 192.168.5.0: ip access-list standard filter deny 192.168.5.0 255.255.255.0

Note:

IP access table is concluded in a cryptic deny rule.

Related Commands

ip access-group ip access-list permit show ip access-list

32.3.2.2 ip access-group

Syntax

To apply an access control list to control packet access, use the ip access-group command in the appropriate configuration mode. To remove the specified access group, use the no form of this command.

ip access-group {access-list-name}{in | out}

no ip access-group {access-list-name}{in | out}

Parameter

Parameter	Description

access-list-name	Name of an IP access list as specified by an ip access-list command.
in	Use the access list in the ingress.
out	Use the access list in the egress.

Command Mode

Interface configuration mode

Usage Guidelines

Access lists can be applied on either outbound or inbound interfaces. For standard inbound access lists, after receiving a packet, the Cisco IOS software checks the source address of the packet against the access list. For extended access lists, the router also checks the destination access list. If the access list permits the address, the software continues to process the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host unreachable message. If the specified access list does not exist, all packets are passed.

Example

The following example applies list on packets outbound from Ethernet interface vlan1: interface vlan 1 ip access-group filter out

Related Commands

ip access-list show ip access-list

32.3.2.3 ip access-list

To define an IP access list by name or number, use the ip access-list command in global configuration mode. To remove the IP access list, use the no form of this command.

ip access-list {standard | extended} name

no ip access-list {standard | extended} name

Parameter

Parameter	Description
standard	Specifies a standard IP access list.
extended	Specifies an extended IP access list.

name	Name of the access list. It is a character string with no more than 20	
	characters.	

Default

No IP access list is defined.

Command Mode

Global configuration

Usage Guidelines

Use this command to configure a named or numbered IP access list. This command will place the router in access-list configuration mode, where you must define the denied or permitted access conditions with the deny or permit commands.

Example

The following example defines a standard access list: ip access-list standard filter deny 192.168.1.0 255.255.255.0 permit any

Related Commands

deny ip access-group permit show ip access-list

32.3.2.4 permit

Syntax

To set conditions to allow a packet to pass a named IP access list, use the permit command in access list configuration mode. To remove a permit condition from an access list, use the no form of this command.

permit source [source-mask] [log] [location]

no permit source [source-mask] [log]

permit protocol source *source-mask* destination *destination-mask* [[precedence precedence] [tos tos] [log] [offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment] [not-fragment] [offset-not-zero] [log]]

no permit protocol source *source-mask* destination *destination-mask* [[precedence precedence] [tos tos] [log] [offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment] [not-fragment] [offset-not-zero] [log]]

KYLAND

Internet Control Message Protocol (ICMP)

permit icmp source source-mask destination destination-mask [icmp-type] [precedence precedence] [tos tos] [log]

Internet Group Management Protocol (IGMP)

permit igmp source source-mask destination destination-mask [igmp-type] [precedence precedence] [tos tos] [log]

Transmission Control Protocol (TCP)

permit tcp source *source-mask* [operator *port*] destination *destination-mask* [operator *port*] [established] [precedence precedence] [tos tos] [log]

User Datagram Protocol (UDP)

permit udp source *source-mask* [operator port [*port*]] destination *destination-mask* [operator *port*] [precedence *precedence*] [tos tos] [log]

Parameter

Parameter	Description
protocol	Stands for the protocol name or IP protocol number. It can be one of these keywords icmp, igmp, igrp, ip, ospf, tcp or udp, or be an integer (protocol number) from 0 to 255. To match up with any Internet protocols (include ICMP, TCP and UDP), use the keyword ip. Some protocols allow further limitations as described later.
source	Stands for a source network or host number. There are two methods to designate the source: 32-bit binary number or a decimal number separated by four points. The keyword any is used as the shortened forms of the source and the source mask of 0.0.0.0 0.0.0.0.
source-mask	Stands for the source address of the network mask. The keyword any is used as the shortened forms of the source and the source mask of 0.0.0.0 0.0.0.0.
destination	Number of the network or host to which the packet is being sent. There are two alternative ways to specify the destination: Use a 32-bit quantity in four-part dotted-decimal format. Use the any keyword as an abbreviation for the destination and destination-wildcard of 0.0.0.0 0.0.0.0.
destination-mask	Destination address network mask. Use the any keyword as an abbreviation for the destination address and destination address

	mask of 0.0.0.0 0.0.0.
tos tos	(Optional) Packets can be filtered by type of service (ToS) level, as specified by a number from 0 to 15.
icmp-type	(Optional) ICMP packets can be filtered by ICMP message type. The type is a number from 0 to 255.
igmp-type	(Optional) IGMP packets can be filtered by IGMP message type or message name. A message type is a number from 0 to 15.
operator	(Optional) Compares source or destination ports. The operations include the eq operation. If the operator follows the source parameter and the source-mask parameter, it must match up with the source port. If the operator follows the destination parameter and the destination-mask parameter, it must match up with the destination port.
port	(Optional) The decimal number or name of a TCP or UDP port. A port number is a number from 0 to 65535.
established	(Optional) One established connection only for TCP protocol. If the TCP data packet has ACK or RST, the match is established; otherwise, the TCP data packet will be initialized.
log	(Optional) log record.

Command Mode

IP access list configuration

Usage Guidelines

Use this command following the ip access-list command to define the conditions under which a packet passes the named access list.

The time-range keyword allows you to identify a time range by name. The time-range, absolute, and periodic commands specify when this permit statement is in effect.

Note:

After initially establishing an access list, any subsequent adding content (which can be input by terminal) is put in the bottom of the list.

KYLAND

Example

The following example permits network range 192.168.5.0:

ip access-list standard filter

permit 192.168.5.0 255.255.255.0

Note:

IP access table is concluded in a cryptic deny rule.

Related Commands

deny ip access-group ip access-list show ip access-list

32.3.2.5 show ip access-lists

Syntax

To display the contents of all current IP access lists, use the show ip access-list command in user EXEC or privileged EXEC mode.

show ip access-list [access-list-name]

parameter

Parameter	Description
access-list-name	Name of the IP access list. It is a character string of 20 characters.

Default

All standard and extended IP access lists are displayed.

Command Mode

EXEC

Usage Guidelines

The show ip access-list command provides output identical to the show access-lists command, except that it is IP-specific and allows you to specify a particular access list.

Example

The following is sample output from the **show ip access-list** command when the name of a specific access list is not requested:

Switch# show ip access-list ip access-list standard aaa permit 192.2.2.1 permit 192.3.3.0 255.255.255.0 ip access-list extended bbb permit tcp any any eq www permit ip any any

The following is sample output from the show ip access-list command when the name of a specific access list is requested:

ip access-list extended bbb permit tcp any any eq www permit ip any any

32.3.3 IP Access List Configuration Commands

32.3.3.1 deny

Syntax

To set conditions in a named IP access list that will deny packets, use the deny command in access list configuration mode. To remove a deny condition from an access list, use the no form of this command.

deny source [source-mask] [log] [location]

no deny source [source-mask] [log]

deny protocol source source-mask destination destination-mask[[precedence precedence] [tos tos] [log] [offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment] [not-fragment] [offset-not-zero] [log]]

no deny protocol source source-mask destination destination-mask[[precedence precedence] [tos tos] [log]
[offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment]
[not-fragment] [offset-not-zero] [log]]

Internet Control Message Protocol (ICMP)

deny icmp source source-mask destination destination-mask [icmp-type] [tos tos]

Internet Group Management Protocol (IGMP)

deny igmp source source-mask destination destination-mask [igmp-type] [tos tos]

Transmission Control Protocol (TCP)

deny tcp source source-mask [operator port] destination destination-mask [operator port] [tos tos]

User Datagram Protocol (UDP)

deny udp source source-mask [operator port] destination destination-mask [operator port] [tos tos]

Parameter

Parameter	Description
protocol	Stands for the protocol name or IP protocol number. It can be one of these keywords icmp, igmp, igrp, ip, ospf, tcp or udp, or be an integer (protocol number) from 0 to 255. To match up with any Internet protocols (include ICMP, TCP and UDP), use the keyword ip. Some protocols allow further limitations as described later.
source	Stands for a source network or host number. There are two methods to designate the source: 32-bit binary number or a decimal number separated by four points. The keyword any is used as the shortened forms of the source and the source mask of 0.0.0.0 0.0.0.0.
source-mask	Stands for the source address of the network mask. The keyword any is used as the shortened forms of the source and the source mask of 0.0.0.0 0.0.0.0.
destination	Number of the network or host to which the packet is being sent. There are two alternative ways to specify the destination: Use a 32-bit quantity in four-part dotted-decimal format. Use the any keyword as an abbreviation for the destination and destination-wildcard of 0.0.0.0 0.0.0.0.
destination-mask	Destination address network mask. Use the any keyword as an abbreviation for the destination address and destination address mask of 0.0.0.0 0.0.0.
tos tos	(Optional) Packets can be filtered by type of service (ToS) level, as specified by a number from 0 to 15.
icmp-type	(Optional) ICMP packets can be filtered by ICMP message type. The type is a number from 0 to 255.
igmp-type	(Optional) IGMP packets can be filtered by IGMP message type or message name. A message type is a number from 0 to 15.

o	perator	(Optional) Compares source or destination ports. The operations
		include the eq operation. If the operator follows the source
		parameter and the source-mask parameter, it must match up with the
		source port. If the operator follows the destination parameter and
		the destination-mask parameter, it must match up with the
		destination port.
р	ort	(Optional) The decimal number or name of a TCP or UDP port. A port
		number is a number from 0 to 65535.

Command Mode

IP Access List Configuration Mode

Usage Guidelines

Use this command following the ip access-list command to specify conditions under which a packet cannot pass the named access list. The time-range keyword allows you to identify a time range by name. The time-range, absolute, and periodic commands specify when this deny statement is in effect.

Note:

After initially establishing an access list, any subsequent adding content (which can be input by terminal) is put in the bottom of the list.

Example

The following example denies the network range 192.168.5.0:

ip access-list standard filter

deny 192.168.5.0 255.255.255.0

Note:

IP access table is concluded in a cryptic deny rule.

Related Commands

ip access-group ip access-list permit show ip access-lists

32.3.3.2 ip access-group

Syntax

To apply an access control list to control packet access, use the ip access-group command in the appropriate configuration mode. To remove the specified access group, use the no form of this command. [no] ip access-group [access-list-name]

Parameter

Parameter	Description
access-list-name	Name of an IP access list as specified by an ip access-list command.

Command Mode

Interface configuration mode

Usage Guidelines

Access lists can be applied on either outbound or inbound interfaces. For standard inbound access lists, after receiving a packet, the Cisco IOS software checks the source address of the packet against the access list. For extended access lists, the router also checks the destination access list. If the access list permits the address, the software continues to process the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host unreachable message. If the specified access list does not exist, all packets are passed.

Example

The following example applies list on packets outbound from Ethernet interface g0/10: interface g0/10 ip access-group filter

Related Commands

ip access-list show ip access-lists

32.3.3.3 ip access-list

Syntax

To define an IP access list by name or number, use the ip access-list command in global configuration mode. To remove the IP access list, use the no form of this command. **ip access-list {standard | extended}** *name* **no ip access-list {standard | extended}** *name*

Parameter

Parameter	Description
standard	Specifies a standard IP access list.
extended	Specifies an extended IP access list.
name	Name of the access list. It is a character string with no more than 20
	characters.

Default

No IP access list is defined.

Command Mode

Global configuration

Usage Guidelines

Use this command to configure a named or numbered IP access list. This command will place the router in access-list configuration mode, where you must define the denied or permitted access conditions with the deny or permit commands.

Example

The following example defines a standard access list:

ip access-list standard filter

deny 192.168.1.0 255.255.255.0

permit any

Related Commands

deny ip access-group permit show ip access-lists

32.3.3.4 permit

Syntax

To set conditions to allow a packet to pass a named IP access list, use the permit command in access list configuration mode. To remove a permit condition from an access list, use the no form of this command.

permit source [source-mask] [log] [location]

no permit source [source-mask] [log]

permit protocol source *source-mask* destination *destination-mask* [[precedence precedence] [tos tos] [log] [offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment] [not-fragment] [offset-not-zero] [log]]

no permit protocol source *source-mask* destination *destination-mask* [[precedence precedence] [tos tos] [log] [offset-zero] [totallen] [time-range] [location] [ttl] [donotfragment-set] [donotfragment-notset] [is-fragment] [not-fragment] [offset-not-zero] [log]]

Internet Control Message Protocol (ICMP)

permit icmp source source-mask destination destination-mask [icmp-type] [tos tos]

Internet Group Management Protocol (IGMP)

permit igmp source source-mask destination destination-mask [igmp-type] [tos tos]

Transmission Control Protocol (TCP)

permit tcp source source-mask [operator port] destination destination-mask [operator port] [tos tos] User Datagram Protocol (UDP)

permit udp source source-mask [operator port [port]] destination destination-mask [tos tos]

Parameter

Parameter	Description
protocol	Stands for the protocol name or IP protocol number. It can be one of these keywords icmp, igmp, igrp, ip, ospf, tcp or udp, or be an integer (protocol number) from 0 to 255. To match up with any Internet protocols (include ICMP, TCP and UDP), use the keyword ip. Some protocols allow further limitations as described later.
source	Stands for a source network or host number. There are two methods to designate the source: 32-bit binary number or a decimal number separated by four points. The keyword any is used as the shortened forms of the source and the source mask of 0.0.0.0 0.0.0.0.
source-mask	Stands for the source address of the network mask. The keyword any is used as the shortened forms of the source and the source mask of 0.0.0.0.0.0.0.0.
destination	Number of the network or host to which the packet is being sent. There are two alternative ways to specify the destination: Use a 32-bit quantity in four-part dotted-decimal format. Use the any keyword as an abbreviation for the destination and destination-wildcard of 0.0.0.0 0.0.0.0.

destination-mask	Destination address network mask. Use the any keyword as an abbreviation for the destination address and destination address mask of 0.0.0.0 0.0.0.
tos tos	(Optional) Packets can be filtered by type of service (ToS) level, as specified by a number from 0 to 15.
icmp-type	(Optional) ICMP packets can be filtered by ICMP message type. The type is a number from 0 to 255.
igmp-type	(Optional) IGMP packets can be filtered by IGMP message type or message name. A message type is a number from 0 to 15.
operator	(Optional) Compares source or destination ports. The operations include the eq operation. If the operator follows the source parameter and the source-mask parameter, it must match up with the source port. If the operator follows the destination parameter and the destination-mask parameter, it must match up with the destination port.
port	(Optional) The decimal number or name of a TCP or UDP port. A port number is a number from 0 to 65535.

Command Mode

IP access list configuration

Usage Guidelines

Use this command following the ip access-list command to define the conditions under which a packet passes the named access list.

The time-range keyword allows you to identify a time range by name. The time-range, absolute, and periodic commands specify when this permit statement is in effect.

Note:

After initially establishing an access list, any subsequent adding content (which can be input by terminal) is put in the bottom of the list.

Example

The following example permits network range 192.168.5.0: ip access-list standard filter permit 192.168.5.0 255.255.255.0

Note:

IP access table is concluded in a cryptic deny rule.

Related Commands

deny ip access-group ip access-list show ip access-list

32.3.3.5 show ip access-lists

Syntax

To display the contents of all current IP access lists, use the show ip access-list command in user EXEC or privileged EXEC mode.

show ip access-list [access-list-name [config-list | merge-list | both-list]]

Parameter

	Parameter	Description	Default	
All	access-list-name	Name of the IP access list. It is a character string of 20 characters.	standard	and
access	config-list	Displays the original config list.	extended lists	IP are
	merge-list	Displays the merge list.	displayed.	
Modo	both-list	Displays the config list and the merge list.	Comman	d

Mode L

EXEC

Usage Guidelines

The show ip access-list command provides output identical to the show access-lists command, except that it is IP-specific and allows you to specify a particular access list.

Example

The following is sample output from the **show ip access-list** command when the name of a specific access list is not requested:

Switch# show ip access-list ip access-list standard aaa permit 192.2.2.1 permit 192.3.3.0 255.255.255.0 ip access-list extended bbb

permit tcp any any eq 25

permit ip any any

The following is sample output from the show ip access-list command when the name of a specific access list is requested:

ip access-list extended bbb

permit tcp any any eq 25

permit ip any any

32.4 **IP Access List Configuration Commands**

32.4.1 IP Access List Configuration Commands

IP access list configuration commands include:

- (1) ip access-group
- (2) ipv6 access-group

32.4.1.1 ip access-group

Syntax

To apply an access control list to control packet access, use the ip access-group command in the appropriate configuration mode. To remove the specified access group, use the no form of this command. In interface configuration mode:

[no] ip access-group name

In global configuration mode:

[no] ip access-group name [vlan {word | add word | remove word}]

Enable the IP access list that created on the port or global, or remove the IP access list that applied on the port or global.

Parameter

Parameter	Description
name	Name of an IP access list
Vlan	Apply the access list on inbound of VLAN.
Word	VLAN range table

add	Add VLAN range table
remove	Remove VLAN range table

Command Mode

Global configuration mode or interface configuration mode

Usage Guidelines

Most of the commands in the access list are configured by hardware. The commands that are not supported by hardware do not prompt errors, but have no actual effect. A small amount commands such as time-range is configured by software.

Note: Ipv4 standard access list support: Any: any source ip address source-addr source-mask : source address matching reverse-mask source-addr source-mask: reverse mask source address matching ipv4 extended access list support: any: any ip address Ip-protocol: IP protocol number ip -IP protocol reverse-mask -protocols for the reverse mask configuration eq/gt/lt/src-portrange/ dst-portrange: tcp/udp port number matching gre: GRE protocol number matching icmp: ICMP protocol number matching igmp: IGMP protocol number matching ospf: OSPF touting protocol number matching tcp/udp port number matching can configure source port number matching and destination port number

matching at the same time, but only the destination port number matching takes effect. However, if one of the matching methods is eq, the source port number matching and destination port number matching can take effect at the same time.

Example

The following example applies access list filter on packets inbound from Ethernet interface g0/1:

Switch_config#inter g0/1

Switch_config_g0/1# ip access-group filter

32.4.1.2 ipv6 access-group

Syntax

To apply an access control list to control packet access, use the ipv6 access-group command in the port

configuration mode. To remove the specified access group, use the no form of this command.

In interface configuration mode:

[no] ip access-group name

In global configuration mode:

[no] ipv6 access-group name [vlan {word | add word | remove word}]

Enable the IP6 access list that created on the port or global, or remove the IP6 access list that applied on the port or global.

Parameter

Parameter	Description
name	Name of an IP access list
Vlan	Apply the access list on inbound of VLAN.
Word	VLAN range table
add	Add VLAN range table
remove	Remove VLAN range table

Command mode

Global configuration mode or interface configuration mode

Usage Guidelines

Most of the commands in the access list are configured by hardware. The commands that are not supported by hardware do not prompt errors, but have no actual effect. A small amount commands such as time-range is configured by software.

Note:

Ipv6 access list support:

Any: any ipv6 address

Ipv6-addr/ host *Ipv6-addr:* ipv6 address matching

Ipv6-protocol: ipv6 protocol number

eq/gt/lt/src-port-range/ dst-port-range: tcp/udp port number matching

dscp/flow-label: packets flied matching

tcp/udp port number matching can configure source port number matching and destination port number matching at the same time, but only the destination port number matching takes effect. However, if one of the matching methods is eq, the source port number matching and destination port number matching can take effect at the same time.

Example

The following example applies access list filter on packets inbound from Ethernet interface g0/1: Switch_config#inter g0/1

Switch_config_g0/1# ipv6 access-group filter

33 Routing Configuration Commands

33.1 VRF Configuration Commands

33.1.1 VRF Configuration Commands

VRF Configuration Commands include:

- 1. ip vrf vrf-name
- 2. description
- 3. export map
- 4. import map
- 5. rd
- 6. route-target
- 7. **ip vrf forwarding**
- 8. ip vrf sitemap
- 9. show ip vrf

33.1.1.1 ip vrf vrf-name

Syntax

To configure VRF, enter the VRF configuration mode. To return to the default setting, use the no form of this command.

ip vrf vrf-name

no ip vrf vrf-name

Parameter

vrf-name Name of VRF

Default value

None

Command mode

Routing configuration mode

Usage guidelines

If VRF is created, use command **ip vrf vrf-name** to enter VRF configuration mode and VRF will not be created again, vice verse.

Use command **no ip vrf vrf-name** to delete all configurations of VRF. Delete VRF table and VRF configuration of relevant ports but sitemap configuration will not be deleted.

Example

The following example shows how to create VRF named PE.

R1_config#ip vrf PE

Related command

rd

33.1.1.2 description

Syntax

To configure VRF description, run the following command. **description** *LINE*

no **description**

Parameter

LINE Description shall be 79 characters at most

Default value

None

Command mode

VRF configuration mode

Usage guidelines

Example

The following example shows how to configure description of VRF named PE.

R1_config#ip vrf PE

R1_config_vrf_PE#description this is description for pe vrf

Related command

ip vrf vrf-name

33.1.1.3 export map

Syntax

To configure expand attribute the route carries with which VRF sends out, run the following command. To return to the default setting, use the no form of this command.

export map WORD

no export map WORD

Parameter

WORD name of route-map

Default value

None

Command mode

VRF configuration mode

Usage guidelines

When using the command **export map** *WORD*, if the corresponding VRF is not configured with export map, the export map name of VRF is that of route-map. If export map is configured with a different name, the export map name of VRF is the new configured name of route-map; if VRF is configured with a same name that export map, there will be a hint: "%Warning, This entry have been configed."

When using the command **no export map** *WORD*, if the to be deleted export map name is not consistent with that of VRF, there will be a hint: "%Err, This entry is not configed"; if the to be deleted export map name is consistent with that of VRF, the export map of VRF will be deleted.

When using the command **no export map**, the corresponding VRF is configured with export map and export map of VRF will be deleted; if the corresponding VRF is not configured with export map, there will be no response.

MP-BGP route with VRF configured export map which sent out by VRF output target VPN expansion attribute.

Example

The following example shows how to configure route-map name of VRF export map of PE as pe-export-map:

R1_config#ip vrf PE

R1_config_vrf_PE#export map pe-export-map

R1_config_vrf_PE#exit

R1_config#route-map pe-export-map 10 permit

R1_config_route_map #set extcommunity rt 1:1

Related command

ip vrf vrf-name

rd

33.1.1.4 import map

Syntax

To configure route-map filter condition of addting to VRF routing table, run the following command. To return to the default setting, use the no form of this command.

import map WORD

no import map WORD

Parameter

WORD Name of route-map

Default value

None

Command mode

VRF configuration mode

Usage guidelines

When using the command **import map** *WORD*, if the corresponding VRF is not configured with **import** map, the import map name of VRF is that of route-map. If import map is configured with a different name, the import map name of VRF is the new configured name of route-map; if VRF is configured with a same name that import map, there will be a hint: "%Warning, This entry have been configed."

When using the command **no export map WORD**, if the to be deleted import map name is not consistent with that of VRF, there will be a hint: "%Err, This entry is not configed"; if the to be deleted import map name is consistent with that of VRF, the import map of VRF will be deleted.

When using the command **no export map**, the corresponding VRF is configured with import map and import map of VRF will be deleted; if the corresponding VRF is not configured with import map, there will be no response.

MP-BGP route with VRF configured export map which sent out by VRF output target VPN expansion attribute.

Example

The following example shows how to configure route-map name of VRF import map of PE as pe-export-map:

R1_config#ip vrf PE

R1_config_vrf_PE#import map pe-import-map

R1_config_vrf_PE#exit

R1_config#route-map pe-import-map 10 permit

R1_config_route_map # match ip address 1

R1_config_route_map #exit

R1_config#ip access-list standard 1

R1_config_std#permit 1.1.1.0 255.255.255.0

R1_config_std#exit

Related command

ip vrf vrf-name

rd

33.1.1.5 rd

Syntax

To configure VPN route tag of VRF, run the following command.

rd ASN:nn or IP-address:nn

Parameter

ASN:nn or IP-address:nn route tag of VPN

Default value

None

Command mode

VRF configuration mode

Usage guidelines

RD with 8-byte length is consist of 2-byte domain and 6-byte domain.

The type domain determines the length of two sub-domains (manager domain and distribution value sub domain) in the value domain. At present, the type domain defines 3 values: 0, 1 and 2.

For type 0, manger sub-domain has 2 bytes while the distribution value sub-domain has 4 bytes. Manger sub-domain uses 2-byte ASN and the distribution value domain offers value spaces managed by service provider. The value space is used for offering VPN service and is related to the distributed ASN.

For type 1, manger sub-domain has 4 bytes while the distribution value sub-domain has 2 bytes. Manger sub-domain uses 1 IPv4 address and the distribution value domain offers value spaces managed by service provider. The value space is used for offering VPN service and is related to the distributed IPv4.

For type 2, manger sub-domain has 4 bytes while the distribution value sub-domain has 2 bytes. Manger sub-domain uses ASN with 4 bytes and the distribution value domain offers value spaces managed by service provider. The value space is used for offering VPN service and is related to the distributed ASN.

When using the command **rd**, if its corresponding VRF is configured with the same route tag, there is a hint: "%Warning, This entry have been configed"; if its corresponding VRF is configured with a different route tag, there is a hint: "%Warning, Do 'no ip vrf' before redefining the VRF". If you want to change the route tag of configured VRF, you must delete VRF first and re-create it; if the corresponding VRF hasn't configure the route tag, the route tag of VRF will become the new configured route tag.

If configuring RD on PE router, it is not required all routes in one VPN use the same RD, but it must be guaranteed that each RD is globally exclusive.

Example

The following example shows how to configure VPN route tag of VRF named PE to 1:1: R1_config#ip vrf PE R1_config_vrf_PE#rd 1:1

Related command

ip vrf vrf-name

33.1.1.6 route-target

Syntax

To configure target VPN expansion attribute, run the following command. To return to the default setting, use the no form of this command.

route-target [export|import|both] ASN:nn or IP-address:nn

no route-target [export|import|both] [ASN:nn or IP-address:nn]

Parameter

ASN:nn or IP-addres destination VPN expansion attribute s:nn

Default value

None

Command mode

VRF configuration mode

Usage guidelines

route-target ASN:nn or IP-address:nn

The command is used to add VRF input and output target VPN expansion attribute as the configured value.

route-target export ASN:nn or IP-address:nn

The command is used to add VRF output target VPN expansion attribute as the configured value.

route-target import ASN:nn or IP-address:nn

The command is used to add VRF input target VPN expansion attribute as the configured value.

route-target both ASN:nn or IP-address:nn

The command is used to add VRF input and output target VPN expansion attribute as the configured value.

no route-target

The command is used to delete all input and output target VPN expansion attribute of VRF.

no route-target ASN:nn or IP-address:nn

The command is used to delete all input and output target VPN expansion attribute of VRF.

The command is used to delete all output target VPN expansion attribute of VRF.

no route-target export ASN:nn or IP-address:nn

The command is used to delete all output target VPN expansion attribute of VRF.

no route-target import

The command is used to delete all output target VPN expansion attribute of VRF.

no route-target import ASN:nn or IP-address:nn

The command is used to delete all input target VPN expansion attribute of VRF.

The command is used to delete all output target VPN expansion attribute of VRF.

no route-target both

The command is used to delete all output target VPN expansion attribute of VRF.

no route-target both ASN:nn or IP-address:nn

The command is used to delete the designated input and output target VPN expansion attribute of VRF.

The command **route-target** is used to configure route-target expansion attribute. If the target expansion attribute is existed, there is a hint: "%Warning, This entry have been configed."

The command **no route-target** is used to delete the command route-target expansion attribute. If the target expansion attribute is not existed, there is a hint: "%Err, This entry is not configed."

Using BGP expansion community attribute of BGP to limit issue of VPN routing information. The expansion community attribute works as the carrier of route attribute in BGP information.

The route received by MP-BGP can only be added to VRF only if route-target import of VRF is allowed.

When MP-BGP sending route, VRF configured route-target export taken as route-target expansion attribute of VPN route will be informed to other PE.

Example

The following example shows how to input target VPN expansion attribute of VRF named PE as 1:1: R1_config#ip vrf PE

R1_config_vrf_PE#route-target import 1:1

Related command

ip vrf vrf-name

rd

33.1.1.7 ip vrf forwarding

Syntax

To relate the interface to VRF, run the following command. To return to the default setting, use the no form of this command.

ip vrf forwarding vrf-name

no ip vrf forwarding [vrf-name]

Parameter

vrf-name Name of VRF

Default value

The interface is non-related to VRF.

Command mode

Interface configuration mode

Usage guidelines

ip vrf forwarding vrf-name

If the interface is not related to VRF, the command is used to relate the interface to VRF and delete IP address on the interface;

If the interface is related to VRF, the command is used to delete the relation between the interface and the original VRF, set up the new relation between the interface and the new VRF, and delete the interface IP address;

If the interface has been related to the same VRF, there is a hint: "%Warning, Interface type num have existed in VRF vrf-name." Here, type means the port type, num means the interface number, vrf-name means VRF name of the interface.

no ip vrf forwarding

If the interface is not related to VRF, there is a hint: "%Warning, Interface type num not in any VRF." Here, type means the port type, num means the interface number.

If the interface is related to VRF, delete the relation between the interface and VRF and IP address of the interface.

no ip vrf forwarding vrf-name

If there is no related VRF, there is a hint "Err, Interface type num not in VRF vrf-name." Here, type means the port type, num means the interface number, vrf-name means VRF name of the interface.

If the interface is related to other VRF, delete the relation between the interface and VRF and IP address of the interface.

Example

The following example shows how to configure the relation between interface VLAN 1 and VRF PE:

R1_config#ip vrf PE

R1_config_vrf_PE#rd 1:1

R1_config_vrf_PE#exit

R1_config #interface vlan 1

R1_config_v1#ip vrf forwarding PE

Related command

ip vrf vrf-name

33.1.1.8 ip vrf sitemap

Syntax

To configure MP-BGP forwarded routing and Soo attribute of network imbedded route, run the following command. To return to the default setting, use the no form of this command.

ip vrf sitemap WORD

no ip vrf sitemap [WORD]

Parameter

WORD name of route-map

Default value

None

Command mode

Interface configuration mode

Usage guidelines

The interface which configures sitemap will influence MP-BGP forwarded route and Soo attribute of network

The command is configured with sitemap which will influence MP-BGP forwarded routing and Soo attribute of network imbedded route. There is no effect on ce route learned by MP-BGP.

Example

The following example shows how to configure sitemap of vlan 1 to intf-sitemap:

- R1_config #interface vlan 1
- R1_config_v1#ip vrf sitemap intf-sitemap
- R1_config_v1#exit
- R1_config#route-map intf-sitemap 10 permit
- R1_config_route_map #set extcommunity soo 1:1

Related command

ip vrf forwarding

33.1.1.9 show ip vrf

33.1.1.10 Syntax

To designate VRF information, run the following command.

show ip vrf [brief|detail|interface] [WORD]

Parameter

WORD name of VRF

Default value

None

Command mode

Other modes except exec

Usage guidelines

show ip vrf [vrf-name]

or

show ip vrf brief [vrf-name]

The command is used to show VRF brief information.

show ip vrf detail [vrf-name]

The command is used to show details of VRF.

show ip vrf interface [vrf-name]

The command is used to show port information of the designated VRF.

Example

The following example shows how to show VRF information.

R1 #show ip vrf

Name RD Interfaces

CE 1:1 vlan1

PE 2:1

Related command

ip vrf vrf-name

33.2 Static Route Configuration Commands

33.2.1 Static Route Configuration Commands

Static route configuration commands include:

- ip route default
- ip route A.B.C.D
- ip route vrf
- ➢ ip route bfd
- ip route load-balance
- ip route-weight
- ➢ ip route max-number
- ip route max-paths static
- show ip route
- show ip fib

debug ip routing

33.2.1.1 ip route default

Syntax

To set the default route and the corresponding management distance, run **ip route default**. To cancel this settings, run **no** ip route default.

ip route default {next-hop | interface} [distance] [tag tag] [global] [description]

no ip route default {next-hop | interface} [distance] [tag tag] [global]

Parameters

default	Sets the default route.
next-hop	Means the next hop-IP address that is used to reach a network.
interface	Stands for the to-be-used network interface.
distance	Means the management distance (1-255), which is optional.
tag <i>tag</i>	Sets a tag, which is used for matchup and route control.
global descriptio	Next-hop address depends on the route in the global routing table.
n	Means the description for the static routing items.

Default Value

The function to generate a route is disabled.

Command Mode

Routing configuration mode

Usage Guidelines

- (1) This command is used to set the static route which points towards a port or the next hop. In order to avoid route loopback, we make our devices not support the next-hop recursive research of the default route. The configured next hop must be the address of the next-hop device that directly connects the local port.
- (2) The default route also supports to set the equivalent route.
- (3) Parameters of global mode only can be used in VPN static route next hop in the global routing table.
- (4) If a routing device has its default route configured and if the destination address of a packet cannot match up with a specific subnet route or a host route, the packet will be forwarded

through the default route.

- (5) If a route, which points to the loopback or null0 port, is set, it usually turns into a null route.
- (6) The main routing table can contains up to 2K static routes.

Example

The following example shows how to set a default route that points to next hop "192.168.1.133": R-CE_config#interface vlan 1

- R-CE_config_v1#ip address 192.168.1.132 255.255.255.0
- R-CE_config_v1#exit
- R-CE_config#ip route default 192.168.1.133
- R-CE_config#

Related Command

ip route A.B.C.D

ip route vrf

33.2.1.2 ip route A.B.C.D

Syntax

To set a route and its management distance, run **ip route A.B.C.C mask**. To cancel this settings, run **no ip route default**.

ip route *A.B.C.D mask* {next-hop | interface} [a.b.c.d] [distance] [tag *tag*] [global] [description] no **ip route** *A.B.C.D mask* {next-hop | interface} [a.b.c.d] [distance] [tag *tag*] [global]

Parameters

A.B.C.D	Means the IP route of the destination address.
mask	Stands for the mask of the destination address.
next-hop	Means the next hop-IP address that is used to reach a network.
interface	Stands for the to-be-used network interface.
distance	Means the management distance (1-255), which is optional.
a.b.c.d	Forwarding routing address
tag <i>tag</i>	Sets a tag, which is used for matchup and route control.
global	Next-hop address depends on the route in the global routing

n

descriptio table.

Means the description for the static routing items.

Default Value

The function to generate a route is disabled.

Command Mode

Global configuration mode

Usage Guidelines

This command is used to set the static route which points towards a port or the next hop. In order to avoid route loopback, we make our devices not support the next-hop recursive research of the default route. The configured next hop must be the address of the next-hop device that directly connects the local port.

The static route or default route also supports the equivalent route.

Parameters of global mode only can be used in VPN static route next hop in the global routing table.

If a routing device has its default route configured and if the destination address of a packet cannot match up with a specific subnet route or a host route, the packet will be forwarded through the default route.

If a route, which points to the loopback or null0 port, is set, it usually turns into a null route.

The main routing table can contains up to 2K static routes. The allowable maximum number of routes is 64K.

Example

The following example shows how to set a static route that points to next hop "192.168.1.133":

R-CE_config#interface vlan 1

R-CE_config_v1#ip address 192.168.1.132 255.255.255.0

R-CE_config_v1#exit

R-CE_config#ip route 10.1.1.0 255.255.255.0 192.168.1.133

R-CE_config#

Related Command

ip route default ip route vrf

33.2.1.3 ip route vrf

Syntax

To configure static route or default value route in vpn, and set the max routing capacity of VPN table, run the following command. To return to the default setting, use the no form of this command.

ip route vrf vpn_name { {default | network mask } {next-hop | interface} [distance] [tag tag] [global] [description]}
| max-number value }

no ip route vrf vpn_name {{default | network mask } {next-hop | interface} [distance] [tag tag] [global] [description]}

| max-number value}

Parameter

vrf	Configure the default route in the corresponding VPN
vpn_name	name of the corresponding VPN
default	configure the default route
network	destination address IP route prefix
mask	destination address prefix mask
next-hop	next-hop IP address
interface	To be used network interface
distance	(optional) management distance (1 to 255)
tag <i>tag</i>	Set a tag, used for match and control the route
global	Next-hop address belongs to the route in the global routing table
description	Description of the static route entry
max-numbe r	Configure the max route amount of VPN route entry
value	The max route amount of the routing table

Default value

No static route and default route

Command mode

Global configuration mode

Usage guidelines

- Chapter 1 The command is used to configure the static route designating port or next hop. For avoiding recursive query of the next-hop in the statix route, the next-hop configured must be next-hop device address of the directly connected local port.
- Chapter 2 The static route or default route also supports configuration of the equivalent route.
- Chapter 3 Parameters of global mode only can be used in VPN static route next hop in the global routing table.
- Chapter 4 If the route configures a default route, once the packet destination address cannot be matched to the sub-net route or the host route, the packet will be forwarded by the default route.
- Chapter 5 If it is configured with the route directing to loopback or NullO, it will become the black-hole route in general.
- Chapter 6 The max routing number in VPN table is 10K.

Example

The following example shows how to configure a static route directing to 192.168.1.133 in vpn_1:

R-CE_config#interface vlan 1

R-CE_config_vl1#ip vrf forward vpn_1

R-CE_config_v1#ip address 192.168.1.132 255.255.255.0

R-CE_config_v1#exit

R-CE_config#ip route vrf vpn_1 10.1.1.0 255.255.255.0 192.168.1.133

R-CE_config#

Related command

ip route default

ip route A.B.C.D

33.2.1.4 ip route bfd

Syntax

To enable the bidirectional link query of the static route, run the first one of the following two commands.

ip route bfd { static { next-hop | A.B.C.D }| query <interval> | reply <interval> }

no ip route bfd { static { next-hop | A.B.C.D }| query <interval> | reply <interval> }

Parameters

Parameters	Description
------------	-------------

static	Enables the bidirectional link query of the static route.
next-hop	Enables the bidirectional link query of the static route which is urgent for network query.
A.B.C.D	Means the address of the to-be-queried gateway.
query	Sets the query interval.
reply	Means the maximum interval between sending the query packets and receiving the response packets.
interval	Means the configured interval.

The bidirectional link query of the static route is disabled.

Command Mode

Global configuration mode

Usage Guidelines

None

Example

The following example shows hwo to detect the static routing gateway address 1.1.1.1: ip route 10.0.0.0 255.0.0.0 1.1.1.1 ip route bfd static next-hop

ip route bfd static 1.1.1.1

Related Command

None

33.2.1.5 ip route load-balance

Syntax

To set the weight route balance, run the following command. To return to the default setting, use the no form of this command.

ip route load-balance

no ip route load-balance

Parameters

None

Default Value

The load balance of the route is disabled and the route search is conducted according to the load balance of the equivalent route.

Command Mode

Global configuration mode

Usage Guidelines

If you want the route load balance is conducted according to flows, you should run ip route load-balance in global configuration mode; moreover, you have to set the route load balance on the corresponding egress.

Example

- S 1.1.1.0/24 is directly connected, vlan 1
- is directly connected, vlan 2

Supposed that the above-mentioned equivalent route exists and the following equivalent route needs to follow the ratio "2:3" to carry out the load balance, you should set as follows:

- R1_config#ip route load-balance
- R1_config#interface vlan 1
- R1_config_v1#ip route-weight 2
- R1_config_v1#exit
- R1_config# interface vlan 2
- R1_config_v2#ip route-weight 3
- R1_config_v2#exit

Related Command

ip route-weight

33.2.1.6 ip route-weight

Syntax

To set the route weight based on the data flows on the egress port, run the first one of the following two commands.

ip route-weight *value* no ip route-weight

Parameters

Parameters	Description
value	Designates the route weight.

Default Value

The route weight is not set by default, and if the equivalent route exists, the egress port need be selected according to the route balance mode.

Command Mode

Interface configuration mode

Usage Guidelines

If ip route load-balance is not run, this command will not take effect during unicast flow forwarding even though the route weight is set on the interface.

Example

S 1.1.1.0/24 is directly connected, vlan 1 is directly connected, vlan 2 Supposed that the above-mentioned equivalent route exists and the following equivalent route needs to follow the ratio "2:3" to carry out the load balance, you should set as follows:

- R1_config#ip route load-balance
- R1_config#interface vlan 1
- R1_config_v1#ip route-weight 2
- R1_config_v1#exit
- R1_config#interface vlan 2
- R1_config_v2#ip route-weight 3
- R1_config_v2#

Related Command

ip route load-balance

33.2.1.7 ip route max-number

Syntax

To set the maximum number of routes, run the first one of the following two commands.

ip route max-number value

no ip route max-number

Parameters

Parameters	Description
max-number	Sets the maximum number of routes for the global routing table.
value	Means the maximum number of routes which is permitted by the routing table.

Default Value

64K

Command Mode

Global configuration mode

Usage Guidelines

None

Example

The following example shows how to set the maximum number of routes in the global routing table to 20K.

R1_config#ip route max-number 20000

Related Command

None

33.2.1.8 ip route max-paths static

Syntax

To set the number of max next hop of the static equivalent route, run the following command. If there is no further settings, the default value is 8.

ip route max-paths static value

no ip route max-number static

Parameters

Parameters	Description
value	The number of max next hop of the static equivalent route.

Default Value

8

Command Mode

Global configuration mode

Usage Guidelines

None

Example

The following example shows how to set the number of max next hop of the static equivalent route to 5: R1_config#ip route max-paths static 5

Related Command

None

33.2.1.9 show ip route

Syntax

To display the contents of the routing table according to users' requirements, run the following commands for different devices.

show ip route [A.B.C.D | all | detail | protocol | bfd | summary | vrf vrf_name | information]

Parameters

A.B.C.D	Displays a specific route. Displays all routes that can reach address A.B.C.D.
all	Displays all routes, including those inactivated routes.
cache	Displays the status of the route cache.
summary	Displays the summary information about all activated routes.
protocol	Means the protocol name or its keyword such as connected, static,

	bgp, Ospf, beigrp or rip.
bfd	Means the bidirectional listening of the next hop of the static route.
vrf	Displays the VPN route.
vrf_name	Displays corresponding instance name of the VPN route.
information	Displays the global route statistics information.

None

Command Mode

This command can be run in all modes except the EXEC mode.

Usage Guidelines

None

Example

The following example shows how to display VPN_1 route:

show ip route vrf vpn_1

Related Command

show ip fib

33.2.1.10 show ip fib

Syntax

To display the route in the fast forwarding table, run the following command. **show ip fib { route | vrf***vrf*-name **| summary }**

Parameters

Parameters	Description
route	Displays the route in the fast forwarding table
vrf vrf-name	Display the VRF route in the fast forwarding table
summary	Displays the statistics of FIB table

None

Command Mode

This command can be run in all modes except the EXEC mode.

Usage Guidelines

- a. Summary, displays the statistics of FIB table, including the number of the total routing items, the number of the routing items, the status of synchronous traversing, the received number of added and deleted information sent by the main routing module.
- b. If there is a vpn route, this command will display the fast forwarding table of all vpn at the same time.

Example

None

Related Command

show ip route

33.2.1.11 debug ip routing

Syntax

Stand-alone routing (including distributed main control terminal) device debugging commands: **debug ip routing** { bfd | memory | message | search | timer | cache | vrf vrf_name }

Parameters

Parameters	Description
bfd	Means the debugging information about the BFD link of the static route.
memory	Means the debugging information about memory allocation.
message	Means the debugging information about route addition and deletion.
search	Means the debugging information about route query.
timer	Means the debugging information about the timer timeout.
cache	Means the debugging information about cache change.
vrf vrf-name	Means to specify vrf

No debugging information is exported.

Command Mode

EXEC

Usage Guidelines

To disable the debugging information, you should run no debug ip routing.

Example

None

Related Command

None

33.3 **RIP Configuration Commands**

33.3.1 RIP Configuration Commands

RIP Configuration Commands Include:

- 1. auto-summary
- 2. default-information
- 3. default-metric
- 4. ip rip authentication
- 5. ip rip md5-key
- 6. ip rip dynamic-key
- 7. ip rip passive
- 8. ip rip deaf
- 9. ip rip password
- 10. ip rip receive version
- 11. ip rip send version
- 12. ip rip v1demand
- 13. ip rip v2demand
- 14. ip rip split-horizon
- 15. ip rip process-id enable
- 16. neighbor
- 17. offset

- 18. router rip
- 19. timers expire
- 20. timers holddown
- 21. timers update
- 22. validate-update-source
- 23. version
- 24. distance
- 25. filter
- 26. maximum-nexthop
- 27. input-queue
- 28. show ip rip
- 29. show ip rip process-id database
- 30. show ip rip process-id interface
- 31. show ip rip process-id summary
- 32. show ip rip process-id protocol
- 33. debug ip rip database
- 34. debug ip rip packet
- 35. debug ip rip message

33.3.1.1 auto-summary

Syntax

To activate the automatic summarization function, use the auto-summary command. To turn off this function, use the no form of this command.

auto-summary no auto-summary

Parameter

This command has no parameter or keywords.

Default value

Enabled by default

Command mode

RIP global configuration

Usage guidelines

Routing summarization reduces the amount of routing information in the routing tables and switching information.

Routing Information Protocol(RIP) do not support subnet mask, therefore, if it is forwarded to subnets, routing possibly cause ambiguity. RIP Version 1 always uses routing summarization. If using RIP Version 2, you can turn off routing summarization by using the **no auto-summary** command. When routing summarization is off, subnets are advertised..

Example

To specify RIP version on Serial 1/0 as RIP Version 2 and turn off routing summarization function

router rip 1

version 2

no auto-summary

Related commands

version

33.3.1.2 default-information originate

Syntax

To generate a default route, use the default-information originate command. To disable this function, use the no form of this command..

default-information { originate | originate-safe }

no default-information

Parameter

originate: Generates a default route in the RIP local routing table without condition originate-safe: Generates RIP local default route when there is non-RIP default routes in the master routing table

Default

Disable this function by default

Command mode

RIP Global configuration mode

Usage guidelines

After the default-information originate command is activated, the routing information(0.0.0.0/0) is accompanied when send routing updating.

Example

When send routing updating information, the default routing(0.0.0.0/0) is accompanied.

ļ

router rip 1

version 2

default-information originate

!

ip route default vlan1

ļ

33.3.1.3 default-metric

To set default metric values for import routing, use the default-metric command. To return the default stata, use the no form of this command..

default-metric *number* no default-metric

Parameter

parameter	description
number	Default metric value. It has a value from 1 to 16.

Default value

1

Command mode

RIP Global configuration mode .

Usage guidelines

The default-metric command is used to set default routing metric used in importing routing of other routing protocols into Rip packets. When import routing of other protocols, use the specified default routing by default-metric if no specified routing metric.

Example

The following example shows a routing switch in autonomous system 119 using both the RIP and the OSPF routing protocols. The example advertises OSPF-derived routes using the RIP protocol and assigns the OSPF-derived

routes a RIP metric of 8.

router rip 1

default-metric 8

redistribute ospf 119

Related commands

redistribute default-information

33.3.1.4 ip rip authentication

Syntax

To specify the type of authentication used in Routing Information Protocol (RIP) Version 2 packets, use the **ip rip authentication** command in interface configuration mode. To restore plain text authentication, use the no form of this command.

ip rip authentication {simple | message-digest}

no ip rip authentication

Parameter

parameter	description
simple	Plain text authentication.
Md5	MD5 ciphertext authentication type
Dynamic	Dynamic authentication type
Commit	Send authentication request immediately (used for immediate re-authentication after authentication configuration changes).

Default value

Disabled

Command mode

Interface configuration mode

Usage guidelines

RIP Version 1 does not support authentication.

Example

The following example configures the interface to use MD5 ciphertext authentication type:

ip rip authentication md5;

Configure interface to use dynamic ciphertext authentication:

Ip rip authentication dynamic

Related commands

ip rip password ip rip message-digest-key

33.3.1.5 ip rip md5-key

Syntax

To activate authentication for RIP-2 packet and designate MD5-key ciphertext on the interface, run the following command. To return to the default setting, use the no form of this command. **ip rip md5-key** *key-id* **md5** [0 | 7] *password* **no ip rip md5-key**

Parameter

Parameter	Description
key-id	An identifier
Password	A designated password
0	The key is plaintext (default value)
7	The key is ciphertext

Default value

Invalid MD5 authentication

Command mode

Interface configuration mode

Usage guidelines

If there is no configuration of **ip rip md5-key key-id md5 password**, there will be no authentication.

Example

The following example shows how to configure MD5 encrypt authentication packet which belongs to mykey. ip rip md5-key 4 md5 mykey

Related command

ip rip authentication

33.3.1.6 ip rip dynamic-key

Syntax

To activate authentication of RIP-2 and designate MD5 or SHA1 ciphertext authentication key, run the following command. To return to the default setting, use the no form of this command. **ip rip dynamic-key** *key-id* {**md5**|**sha1**} [0 | 7] *password xxxx-xx-xx-xx:xx xx:xx*

no ip rip dynamic-key key-id {md5|sha1}

Parameter

Parameter	Description
key-id	1 identifier
{md5 sha1}	Algorithm of key corresponding to key id
[0 7]	Designate the key type: plaintext (0) or ciphertext (7)
Password	Designate keyword (20 bytes in maximum)
xxxx-xx-xx-xx:xx	Effective time of key corresponding to key id
xx:xx	Effective time length of key corresponding to key id

Default value

Disabled dynamic authentication

Command mode

Interface configuration mode

Usage guidelines

Generally speaking, every key is effective only in the effective time period (As its effective time is based on the system time, it is suggested that the interface neighbor time must be consistant, for instance, refer to a standard

KYLAND

time).

If the dynamic authentication is enabled and no key is activated, only non-authenticated packet can pass the authentication.

If period of validity of key is overtime, No **key** can be updated, the length of effective time of the last key can be automatically extended, until the new key takes effect.

You can add many keys one time, the system will takes effect and lose effect according to configuration of the key.

It enables many keys taking effect. You can choose one key to execute operations when forwarding packets and verify the packet according to key id after receiving the packet.

Suggestion: The effective time length of every key is 24 hours and the one key in operation is activated and the effective time of one key is three minutes before the effective time of last key.

Example

ip rip dynamic-key 2 sha1 xxxxxxxx 2009-3-3-9:0 24:5

ip rip dynamic-key 5 md5 xxxxxxxx 2009-3-10-9:0 24:5

```
ip rip dynamic-key 6 sha1 xxxxxxxxx 2009-3-11-9:0 24:5
```

Related command

ip rip authentication

33.3.1.7 ip rip password

Syntax

To activate Routing Information Protocol (RIP) Version 2 packets authentication and specify the plain text authentication used on the interface, use the **ip rip password** command. Use the no form of this command to prevent authentication.

ip rip password *password* no ip rip password

Parameter

parameter	description
password	The specified password

Default value

No authenctication

Command mode

Interface configuration mode

Usage guidelines

No authentications are carried out on interface without using the **ip rip password** command to configure any password.

Example

The following example configures interface to receive and send any plain text authentication packet that belong to password 'mykey'.

ip rip password mykey

Related commands

ip rip authentication

33.3.1.8 ip rip passive

Syntax

To cancel the routing switch to send routing updating on interface, use the **ip rip passive** command. To reactivate the routing updating, use the no form of this command.

ip rip passive

no ip rip passive

Parameter

None

Default value

Send routing updates on the interface.

Command mode

Interface configuration mode

Usage guidelines

If you cancel routing updating on a certain interface, a specified subnetwork will keep on announcing to other interfaces, and the routing updating that from other routing switches can be continuedly accepted and dealt with on this interface.

KYLAND

Example

The following example sends RIP packets updating to all interfaces (except for VLAN1) that enable RIP process 1:

interface vlan1

ip rip 1 enable

ip address 172.15.0.1 255.255.0.0

ip rip passive

router rip 1

Related commands

None

33.3.1.9 ip rip deaf

Syntax

To disable receiving rip protocol packet on the interface, run the following command. To return to the default setting, use the no form of this command.

ip rip deaf

no ip rip deaf

Parameter

None

Default value

Disabled

Command mode

Interface configuration mode

Usage guidelines

If the **ip rip deaf** command is used on one interface, it will continue to forward routing requirements outward and inform the routing update, but without accepting any rip protocol packet.

Example

The following example shows how to forward RIP packets update to vlan 1 but not receiving rip packets:

interface vlan1

ip rip 1 enable

ip address 172.16.0.1 255.255.0.0

ip rip deaf

router rip 1

Related command

None

33.3.1.10 ip rip receive version

Syntax

To specify a Routing Information Protocol (RIP) version to receive on specified interface, use the **ip rip receive version** command in interface configuration mode. To follow the global version rules, use the no form of this command.

ip rip receive version [1] [2]

no ip rip receive version

Parameter

parameter	description
1	(Optional) Accepts only RIP Version 1 packets on the interface.
2	(Optional) Accepts only RIP Version 2 packets on the interface.

Default value

Accepts RIP Version 1 and RIP Version 2 packets

Command mode

Interface configuration mode

Usage guidelines

Use this command to override the default behavior of RIP as specified by the version command. This command applies only to the interface being configured. You can configure the interface to receive both RIP versions.

Example

The following example configures the interface to receive both RIP Version 1 and Version 2 packets:

ip rip receive version 1 2

The following example configures the interface to receive only RIP Version 1 packets:

ip rip receive version 1

Related commands

ip rip send version version

33.3.1.11 ip rip send version

Syntax

To specify a Routing Information Protocol (RIP) version to send on specified interface, use the **ip rip send version** command in interface configuration mode. To follow the global version rules, use the no form of this command. **ip rip send version** [**1** | **2** | **compatibility**]

no ip rip send version

Parameter

parameter	description
1	(Optional) Sends only RIP Version 1 packets out the interface.
2	(Optional) Sends only RIP Version 2 packets out the interface.
compatibility	(Optional) Broadcasts only RIP Version 2 packets out the interface.

Default value

If there is no configured global version and there is no peer or if version cannot be determined according to rip's adaptive rules, only RIP-2 packets are send.

Command mode

Interface configuration mode

Usage guidelines

Use this command to override the default behavior of RIP as specified by the version command. This command applies only to the interface being configured.

Example

The following example configures the interface to send only RIP Version 1 packets out the interface:

ip rip send version 1

The following example configures the interface to send only RIP Version 2 packets out the interface:

ip rip send version 2

Related commands

ip rip receive version version

33.3.1.12 ip rip v1demand

Syntax

To forward request packets with v1 format, run the following command. To return to the default setting, use the no form of this command.

ip rip v1demand

no ip rip v1demand

Parameter

None

Default value

The command follows the set global version and interface version. If neither, it will follows the auto-adaptation principle (based on the received opposite terminal).

Command mode

Interface configuration mode

Usage guidelines

The command is used to forward request packets with v1 format. The command is non-related to version in the global mode and the version on the interface. The command is only used in forwarding request. In the normal condition, the interface and the global configuration modes are applied (such as update packet).

Example

The following example shows how to configure request packets with v1 format and RIP updated packets with v2 format:

ip rip v1demand

ip rip send version 2

Related command

Ip rip v2demand

Ip rip send

Version

33.3.1.13 ip rip v2demand

Syntax

To forward request packets with v2 format, run the **ip rip v2demand** command. To return to the default setting, use the **no ip rip v2demand** or **default ip rip v2demand** command. **ip rip v2demand no ip rip v2demand**

Parameter

None

Default value

The command follows the set global version and interface version. If neither, it will follow the auto-adaptation principle (based on the received opposite terminal).

Command mode

Interface configuration mode

Usage guidelines

The command is used to forward request packets with v2 format. The command is non-related to version in the global mode and the version on the interface. The command is only used in forwarding request. In the normal condition, the interface and the global configuration modes are applied (such as update packet).

Example

The following example shows how to configure request packets with v2 format and RIP updated packets with v1 format:

ip rip v2demand

ip rip send version 1

Related command

Ip rip v1demand

Ip rip send

version

33.3.1.14 ip rip split-horizon

Syntax

To enable the split horizon mechanism, use the **ip rip split-horizon** command in interface configuration mode. To disable the split horizon mechanism, use the no form of this command.

ip rip split-horizon {simple | poisoned}

no ip rip split-horizon {simple | poisoned}

Parameter

Parameter	Description
simple	Simple split horizon.
poisoned	Split horizon with poisoned reversal.

Default value

Default behavior varies with media type.

Command mode

Interface configuration mode

Usage guidelines

For all interfaces except those for which either Frame Relay or Switched Multimegabit Data Service (SMDS) encapsulation is enabled, the default condition for this command is **ip split-horizon**; in other words, the split horizon feature is active. If the interface configuration includes encapsulation frame-relay, then the default is for split horizon to be disabled.

Note: For networks that include links over X.25 packet switched networks (PSNs), the neighbor routing switch configuration command can be used to defeat the split horizon feature. You can as an alternative explicitly specify the **no ip rip split-horizon {simple | poisoned}** command in your configuration. However, if you do so you must similarly disable split horizon for all routing switches in any relevant multicast groups on that network.

If split horizon has been disabled on an interface and you want to enable it, use the **ip rip split-horizon {simple | poisoned}** command to restore the split horizon mechanism.

Note: In general, changing the state of the default for the **ip rip split-horizon {simple | poisoned}** command is not recommended, unless you are certain that your application requires a change in order to properly advertise routes. If split horizon is disabled on a serial interface (and that interface is attached to a PSN), you must disable split horizon for all routing switches and access servers in any relevant multicast groups on that network.

Example

The following simple example disables split horizon on vlan1.

interface vlan1

no ip rip split-horizon simple

Related commands

neighbor

33.3.1.15 ip rip process-id enable

Syntax

To set the interface relate to one RIP instance, run the following command. To return to the default setting, use the no form of this command.

ip rip process-id enable no ip rip process-id enable

Parameter

Parameter	Description
Process-id	Instance ID. The value ranges from 1 to 65535

Default value

None

Command mode

Interface configuration mode

Usage guidelines

When one interface is configured with this command, the interface will be binded to its corresponding rip instance, becoming rip interface of the instance and generates the direct network segment corresponding to the interface as the rip route; every interface can only connect to one RIP instance. By default the interface does not relate to any instance.

Note: If enable one to be created RIP instance on the interface, create RIP instance with the instance number and vrf of the interface; if enable an existed instance on the interface, but the port binded vrif and the designated vrf when creating the instance, the interface will not become the activation interface of RIP, until the interface vrf is consistant with the instance designated vrf.

Example

interface vlan1

ip rip 1 enable

Related command

Router rip *process-id* [vrf *name*]

33.3.1.16 neighbor

Syntax

To define a neighboring routing switch with which to exchange routing information, use the **neighbor** command in routing switch configuration mode. To remove an entry, use the no form of this command. **neighbor** *ip*-address **no neighbor** *ip*-address

Parameter

parameter	description
ip-address	IP address of a peer routing switch with which routing information will be
	exchanged.

Default value

No neighboring routing switches are defined.

Command mode

RIP Global configuration mode

Usage guidelines

This command permits the point-to-point (nonbroadcast) exchange of routing information in order to meet special requirements of the specified nonbroadcast network.

Example

In the following example, the neighbor routing switch configuration command permits the sending of routing updating to specific neighbors.

router rip 1

neighbor 131.108.20.4

Related commands

Router rip **process-id**

33.3.1.17 offset

Syntax

To add an offset to incoming and outgoing metrics to routes learned via Routing Information Protocol (RIP), use the **offset** command in routing switch configuration mode. To remove an offset list, use the no form of this command.

offset {type number | *} {in | out} access-list-name offset_value
no offset {type number | *} {in | out}

Parameter

parameter	description
In	Applies the access list to incoming metrics.
Out	Applies the access list to outgoing metrics.
access-list-name	Standard access list number to be applied.
Offset_value	Positive offset to be applied to metrics for networks matching the access list.
type	(Optional) Interface type to which the offset list is applied.
number	(Optional) Interface number to which the offset list is applied.

Default value

This command is disabled by default.

Command mode

RIP Global configuration mode

Usage guidelines

The offset value is added to the routing metric. An offset list with an interface type and interface number is considered extended and takes precedence over an offset list that is not extended. Therefore, if an entry passes the extended offset list and the normal offset list, the offset of the extended offset list is added to the metric.

Example

In the following example, the routing switch applies an offset of 10 to routes learned from VLAN1 that satisfies the access list abc:

offset vlan1 in abc 10

33.3.1.18 router rip process-id

Syntax

To configure RIP instance in the global mode, run the following command. To return to the default setting, use the no form of this command.

router rip process-id [vrf vrf-name]

no router rip *process-id* [vrf vrf-name]

Parameter

Parameter	Description
Process-id	Configures instance ID. The value ranges from 1 to 65535.
Vrf-name	Specify the VRF to which the RIP instance belongs.

Default value

By default no RIP instance is operated. When configuring instance, process id is not by default;

Command mode

Global configuration mode

Usage guidelines

Only RIP instance is enabled can the routing instance configuration mode is entered and all global configuration parameters of RIP instance can be configured. Configuration of parameters related to the interface does not limit to the enable of RIP instance.

Example

The following example shows how to enable RIP instance and enter the instance configuration mode. router rip 1

Related command

ip rip process-id enable

33.3.1.19 timers expire

Syntax

To adjust RIP network timers, use the **timers expire** configuration command. To restore the default timers, use the no form of this command.

timers expire interval no timers expire

Parameter

parameter	description
	Interval of time in seconds after which a route is declared invalid; it should be at least three times the value of update. A route becomes invalid when there is an
interval	absence of updates that refresh the route. The route then enters holddown. The
	route is marked inaccessible and advertised as unreachable. However, the route is still used for forwarding packets. The default is 180 seconds.

Default value

180 seconds

Command mode

RIP global configuration mode

Usage guidelines

The basic timing parameters for RIP are adjustable. Since RIP is executing a distributed, asynchronous routing algorithm, it is important that these timers be the same for all routing switches and access servers in the network. **Note:** The current and default timer values can be seen by the **show ip rip** command.

Example

In the following example, if a routing switch is not heard from in 30 seconds, the route is declared unusable. router rip 1

timers expire 30

33.3.1.20 timers holddown

Syntax

To adjust RIP network timers, use the **timers holddown** configuration command. To restore the default timers, use the no form of this command. **timers holddown** second **no timers holddown**

Parameter

parameter	description
	Interval in seconds during which routing information regarding better paths is
	suppressed. It should be at least three times the value of update. A route enters
	into a holddown state when an update packet is received that indicates the route
second	is unreachable. The route is marked inaccessible and advertised as unreachable.
	However, the route is still used for forwarding packets. When holddown expires,
	routes advertised by other sources are accepted and the route is no longer
	inaccessible. The default is 120 seconds.

Default value

120 seconds

Command mode

RIP global configuration mode

Usage guidelines

The basic timing parameters for RIP are adjustable. Since RIP is executing a distributed, asynchronous routing algorithm, it is important that these timers be the same for all routing switches and access servers in the network.

Note:

The current and default timer values can be seen by the show ip rip command.

Example

In the following example, if a routing switch is not heard from in 30 seconds, the route is declared unusable.

router rip 1

timers holddown 30

33.3.1.21 timers update

Syntax

To adjust RIP network timers, use the **timers update** command. To restore the default timers, use the no form of this command.

timers update update no timers update

Parameter

parameter	description
update	Rate in seconds at which updates are sent. This is the fundamental timing
	parameter of the routing protocol. The default is 30 seconds.

Default value

30 seconds

Command mode

RIP global configuration mode

Usage guidelines

The basic timing parameters for RIP are adjustable. Since RIP is executing a distributed, asynchronous routing algorithm, it is important that these timers be the same for all routing switches and access servers in the network.

Note:

The current and default timer values can be seen by the **show ip rip protocol** command.

Example

In the following example, updates are broadcast every 5 seconds.

router rip 1

timers update 5

Note that by setting a short update period, you run the risk of congesting slow-speed serial lines; however, this is not a big concern on faster-speed serial lines. Also, if you have many routes in your updates, you can cause the routing switches to spend an excessive amount of time processing updates.

33.3.1.22 timers trigger

Syntax

To adjust trigger update timer, run the following command. To return to the default setting, use the no form of this command.

timers trigger second no timers trigger

Parameter

Parameter	Description
second	Time interval of trigger update (unit: s)

Default value

5s

Command mode

RIP Global configuration mode

Usage guidelines

The basic timer parameters of RIP can be adjusted. As RIP works on the asynchronous routing algorithm, it's important to set timer parameters of the routers and access routers in the network to the same.

Note:

The **show ip rip** command is used to show parameters of the current or default timer.

Example

router rip 1 timers trigger 4

33.3.1.23 timers peer

Syntax

To adjust peer overtime timer of RIP network, run the following command. To return to the default setting, use the no form of this command.

timers peer second

no timers peer

Parameter

Parameter	Description
second	Time interval of peer overtime

Default value

102s

Command mode

RIP Global configuration mode

Usage guidelines

The basic timer parameters of RIP can be adjusted. As RIP works on the asynchronous routing algorithm, it's important to set timer parameters of the routers and access routers in the network to the same.

Note:

The **show ip rip protocol** command is used to show parameters of the current or default timer.

Example

router rip 1

timers peer 50

33.3.1.24 validate-update-source

Syntax

To have the software validate the source IP address of incoming routing updates for RIP routing protocols, use the **validate-update-source** configuration command. To disable this function, use the no form of this command. **validate-update-source**

no validate-update-source

Parameter

This command has no parameters or keywords.

Default value

Enabled

Command mode

RIP global configuration mode

Usage guidelines

This command is only applicable to RIP and IGRP. The software ensures that the source IP address of incoming routing updates is on the same IP network as one of the addresses defined for the receiving interface. Disabling split horizon on the incoming interface will also cause the system to perform this validation check. For unnumbered IP interfaces (interfaces configured as ip unnumbered), no checking is performed.

Example

router rip 1

no validate-update-source

33.3.1.25 check-zero-domain

Syntax

To check the legality of zero-domain in the routing entries receiving from the neighbor, run the following command. To return to the default setting, use the no form of this command.

check-zero-domain

no check-zero-domain

Parameter

No parameters or key words

Default value

Activated

Command mode

RIP Global configuration mode

Usage guidelines

The command is mainly used in version 1. Only the segments such as route-tag, subnet mask and next hop of the routing entries received in version 1 must be 0.

Example

router rip 1

no check-zero-domain

33.3.1.26 version

Syntax

To specify a RIP version used globally by the routing switch, use the version routing switch configuration command. Use the no form of this command to restore the default value. version {1 | 2}

no version

Parameter

parameter	description
1	Specifies RIP Version 1.
2	Specifies RIP Version 2.

Default value

Send and receive rip packets according to the configuration on each port. If no version is configured on the port, select the version of peer according to the rip adaptive rules. If no peer is configured on the port, the default RIP-2 packets are sent.

Command mode

RIP global configuration mode

Usage guidelines

To specify RIP versions used on an interface basis, use the **ip rip receive version** and **ip rip send version** commands; or it will send RIP packets in terms of the global configuration version.

Example

The following example enables the software to send and receive RIP Version 2 packets: version 2

Related commands

ip rip receive version ip rip send version

33.3.1.27 distance

To define an administrative distance for RIP routes, use the **distance** command in routing switch configuration mode.

distance weight [address mask [access-list-name]]
no distance weight [address mask [access-list-name]]

Parameter

parameter	description
weight	Administrative distance. An integer from 1 to 255. It is recommended to use 10

	to 255. (The values 0 to 9 are reserved for internal use.) Routes with a distance
	value of 255 are not installed in the routing table.)
address	(Optional) Source IP address (in four-part, dotted decimal notation)
mask	(Optional) IP address mask (in four-part, dotted decimal notation) If a certain
	digit is 0, software will omit the corresponding value in the address.
access-list-name	(Optional) Named access list to be applied to incoming routing updates.

120

Command mode

RIP global configuration mode

Usage guidelines

Numerically, an administrative distance is an integer from 0 to 255. In general, the higher the value, the lower the trust rating. When the optional access list name or number is used with this command, it is applied when a network is being inserted into the routing table. This behavior allows filtering of networks according to the IP address of the routing switch that supplies the routing information.

Example

The following example sets the administrative distance to 100 for the routing switch with the address 192.1.1.0/24.

router rip 1

distance 100 192.1.1.0 255.255.255.0

33.3.1.28 filter

Syntax

To filter for RIP routes, use the filter command.

filter { type number | * } { in | out } { access-list access-list-name | gateway access-list-name | prefix-list prefix-list-name }

no filter { *type number* | * } { **in** | **out** } [**access-list** *access-list-name* | **gateway** *access-list-name* | **prefix-list** *prefix-list-name*]

Parameter

parameter	description
-----------	-------------

access-list-name	Standard IP access list name. This list defines networks of which are received or
	suppressed in routing update.
prefix-list-name	Standard IP prefix list name. This list defines networks of which are received or
	suppressed in routing update.
in/out	Applies access list for in/out routing update.
type	(Optional) Interface type
number	(Optional) Indicates number of interface on which applies the access list for
	in/out routing update. If no interface is defined, the access list is applicabale to
	all in/out routing update.

Disabled

Command mode

RIP global configuration mode

Usage guidelines

Filter the route that are to be sent and received. If you use the access-list command to configure **access list** for dynamic routing protocol, you shoul use the standard access list.

example

The following example filter route 10.0.0.0/8 from vlan1:

router rip 1

filter vlan1 out access-list mylist

ip access-list standard mylist

deny 10.0.0.0 255.0.0.0

permit all

33.3.1.29 maxinum-nexthop

Syntax

To configure the max equivalent routing number in RIP routing information, run the following command. To return to the default setting, use the no form of this command.

maximum-nexthop number

no maximum-nexthop

Parameter

Parameter	Description
number	The max equivalent routing number. The value ranges from 1 to 16.

Default value

4

Command mode

RIP Global configuration mode

Usage guidelines

The command is used to set the max equivalent routing number. When learning the complete equivalent routing information (metric, distance) from many neighbors. If the number of neighbor is greater than the max value of the equivalent routing number, there will be no next hop adding to the routing table.

Example

The following example shows how to the equivalent routing number of RIP routing information is 5.

router rip 1

maximum-nexthop 5

Related command

None

33.3.1.30 input-queue

Syntax

To adjust the size of receiving queue, run the following command. To return to the default setting, use the no form of this command.

input-queue number

no input-queue

Parameter

Parameter	Description
number	Size of the receiving queue. The value ranges from 1 to 61440.

Default value

200

Command mode

Global configuration mode

Usage guidelines

The command is used to set size of the receiving queue which unit is packet. The size is suggested not to oversmall, otherwise, the routing cannot not be fully learned when quantities of routing are imput.

Example

The following example shows how to set the size of receiving queue of RIP routing information to 500.

router rip 1

input-queue 500

Related command

None

33.3.1.31 show ip rip

Syntax

To display RIP main information, use the show ip rip command.

show ip rip

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

User can see the current configuration status about RIP instances.according to the output of this command.

Example

The following example displays configuration parameter information about RIP:

Switch#show ip rip

Process: 2

Update: 30, Expire: 180, Holddown: 120

Input-queue: 50

Validate-update-source: Enable

zero-domain-check: Enable

Neighbor List:

interface List:

interface Loopback0

Description of the displaying fields:

Field	Description	
Process	Configure instance ID	
Update	Interval of time at which updates are sent.	
Holddown	Interval (in seconds) during which routing information regarding better paths is	
	suppressed.	
Expire	Interval of time after which a route is expired.	
Input-queue	Message queue depth	
Validate-update-sou	Check the validity of the source address.	
rce		
zero-domain-check	Check the validity of message domain.	
Neighbor List	Configure the Neighbor list.	
interface List	List of ports associated with the instance	

33.3.1.32 show ip rip process-id interface

Syntax

To show all interfaces of RIP instances and status of these interfaces, use the following command. show ip rip *process-id* interface

Parameter

Parameter	Description
Process-id	Instance ID. The value ranges from 1 to 65535

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information and show all interfaces of RIP instances and status of these interfaces.

Example

The following example shows how to show all interfaces of RIP instances and status of these interfaces.

Switch_config#show ip rip 1 interface

Interface Loopback7 ,vrf (0)

Address:22.2.2.2, mask:255.255.255.0

state:active

Send version: V1(default)

Receive version: V1 and V2(default)

Passive: Disable

v1demand: Disable

v2demand: Disable

deaf: Disable

Authentication type: NULL

MD5 authentication key: NULL

Simple password: NULL

Interface GigaEthernet0/0, vrf (0)

Address:2.2.2.1, mask:255.255.255.0

state:active

Send version: V1(default)

Receive version: V1 and V2(default)

Passive: Disable

v1demand: Disable

v2demand: Disable

deaf: Disable

Authentication type: simple

MD5 authentication key: NULL

Simple password: NULL

33.3.1.33 show ip rip process-id summary

Syntax

To show statistics of all routes of RIP instances, run the following command. To return to the default setting, use the no form of this command. show ip rip *process-id* summary

Parameter

Parameter	Description
Process-id	Instance ID. The value ranges from 1 to 65535.

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information, and show the designated statistics of all routes of RIP instances.

Example

The following example shows how to show statistics of all routes of RIP instances.

Switch_config#show ip rip 1 summary

----- RIP Process 1 Summary Statistic -----

RIP route table:

Maximum route number :1024

Total route number :8

Connect route number :2

Learn route number :4

Redistributed route number :0

Holddown route number :0

33.3.1.34 show ip rip process-id database

Syntax

To show all route information of RIP instances, run the following command. show ip rip *process-id* database

Parameter

Parameter	Description
Process-id	Instance ID. The value ranges from 1 to 65535.

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information. It shows all routing information of RIP.

Example

The following example shows how to show all routing information o RIP.

Switch#show ip rip process-id database

1.0.0.0/8 auto-summary

1.1.1.0/24 directly connected Loopback1

100.0.0/8 via 192.1.1.2 (on Vlan1)

192.1.1.0/24 redistributed

Definitions of the above domains:

Domain	Description
Network-number/network-mask	RIP routing
Summary/connected/redistributed/	The corresponding RIP route type
via gateway	
interface	Ports corresponding to RIP route

33.3.1.35 show ip rip process-id protocol

Syntax

To show RIP configuration information, run the following command.

show ip rip process-id protocol

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information and show the current RIP configuration information.

Example

The following example shows how to show the configuration information of RIP protocol.

Switch_config_rip_1#show ip rip 1 pr

RIP 1 is Active

update interval 30(s), Invalid interval 180(s)

Holddown interval 120(s), Trigger interval 1(s), peer interval 102(s)

Automatic network summarization: Enable

Filter list:

Offset list:

Redistribute policy:

KYLAND

Interface send version and receive version:

Global version : default

Interface Send-version Recv-version Nbr_number

Loopback7 V2 V1 V2 0

GigaEthernet0/0 V2 V1 V2 4

Distance: 0 (default is 120):

Maximum route count: 1024, Current route count:8

33.3.1.36 show ip rip process-id peer

Syntax

To show status information of RIP neighbor, run the following command. **show ip rip** *process-id* **peer**

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information and show the current status information of RIP neighbor to the user.

33.3.1.37 debug ip rip database

Syntax

To monitor RIP route event, run the following command.

debug ip rip database

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information and show the event of current RIP route.

Example

The following example shows how to monitor the event of RIP route.

switch# debug ip rip database

RIP-DB: Adding 192.1.1.0/24 <metric 2> via 10.1.1.2 to RIP database

Definitions of the above domains:

Domain	Description
192.1.1.0/24	Route adding to the routing table
<metric 2=""></metric>	Routing metric value
10.1.1.2	Gateway address of the learned route

33.3.1.38 debug ip rip packet [send | receive]

Syntax

To monitor packets RIP received, run the following command.

debug ip rip packet

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information and show the received and sent packets of the current RIP to the user.

Example

The following example shows how to monitor packets of RIP:

Switch# debug ip rip packet

RIP: send to 255.255.255.255 via Loopback1

vers 1, CMD_RESPONSE, length 24

192.1.1.0/0 via 0.0.0.0 metric 2

When running version 2, the following will be output:

RIP: send to 224.0.0.9 via Loopback1

vers 2, CMD_RESPONSE, length 24

192.1.1.0/24 via 0.0.0.0 metric 2

RIP: recv RIP from 10.1.1.2 on Vlan1

vers 2, CMD_REQUEST, length 24

Definitions of the above domains

Domain	Description
Send/Recv	Packets forwarded(send) and received
to/from xx.xx.xx.xx	Destination address or source address of IP packets
via Loopback1/on	Ports for sending or receiving packets
Vlan1	
vers 2	Version numbers for sending or receiving packets
CMD_RESPONSE/	Packet type
CMD_REQUEST	
length 24	Packet length
192.1.1.0/24	Destination network of the routing information
via 0.0.0.0	Next hop address
metric	Metric of the route

33.3.1.39 debug ip rip message

Syntax

To monitor RIP events, run the following command.

debug ip rip message

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

The command is used to output information and show users to events of the current RIP, such as port address, status change and timer overtime.

Example

The following example shows how to monitor RIP packets: Switch# debug ip rip message

RIP: Update timer timeout(process 1)

33.4 **BEIGRP Configuration Commands**

33.4.1 BEIGRP Configuration Commands

BEIGRP Configuration Commands Include:

- auto-summary
- clear ip beigrp neighbors
- debug ip beigrp
- debug ip beigrp fsm
- debug ip beigrp neighbours
- debug ip beigrp packet
- debug ip beigrp transmit
- default-metric
- distance

- filter
- beigrp log-neighbor-changes
- beigrp router-id
- ip beigrp bandwidth-percent
- ip beigrp hello-interval
- ip beigrp hold-time
- ip beigrp passive
- ip beigrp split-horizon
- metric weights
- network
- offset
- redistribute
- router beigrp
- show ip beigrp interface
- show ip beigrp neighbors
- show ip beigrp protocol
- show ip beigrp topology
- show ip beigrp traffic

33.4.1.1 auto-summary

Syntax

The auto summary is disabled by default. Since auto summary is currently not supported to enable, this command has no form only.

no auto-summary

Parameter

None

default

Disabled

Command mode

Router configuration

Usage guidelines

None

related commands

None

33.4.1.2 clear ip beigrp neighbors

Syntax

To delete entries from the neighbor table, use the **clear ip beigrp** command in EXEC mode. **clear ip beigrp** [*as-number*] **neighbors** [*ip-address* | *interface*-type *interface-number*]

Parameter

parameter	description	
as_number	(Optional) Neighbor's autonomous system number.	
ip-address	(Optional) Address of BEIGRP's neighbor.	
interface	(Optional) Interface name. After typing this parameter, all neighbors on this	
	interface will perform adjacent reset.	

default

none

Command mode

EXEC

Usage guidelines

All BEIGRP's neighbors will be reset without specifying any parameter.

The use of this command will lead adjacent reset of one or several neighbors, and then triggers routing operation. In the case when many routes are influenced, it may cause route fluctuation, and it needs some time to convergence again. So we recommend not to use this command unless the system is in the network debugging stage.

Example

The following example removes all neighbors on vlan 1 and triggers recalculation of the related routes:

clear ip beigrp neighbors vlan 1

33.4.1.3 debug ip beigrp

Syntax

To trace BEIGRP protocol information, you can press this command in the privileged EXEC mode. debug ip beigrp no debug ip beigrp

parameter

none

default

none

Command mode

EXEC

Usage guidelines

It helps to find network malfunction using this command.

Example

debug ip beigrp

33.4.1.4 debug ip beigrp fsm

Syntax

To trace the change of state machine of BEIGRP DUAL algorithm, use the debug ip beigrp fsm command in EXEC command.

debug ip beigrp fsm

Parameter

none

default

none

Command mode

EXEC

Usage guidelines

It helps to find network malfunction using this command

Related commands

debug ip beigrp packets

33.4.1.5 debug ip beigrp neighbors

Syntax

To display the establishment and deletion of BEIGRP neighbors, use the debug ip beigrp neighbors command in EXEC mode.

debug ip beigrp neighbors

Parameter

None

Default

None

Command mode

EXEC

Usage guidelines

It helps to find network malfunction using this command.

example

TestC#debug ip beigrp neighbors

BEIGRP: Neighbor 192.168.20.141 went down on vlan 1 for peer restarted.

BEIGRP: Neighbor(192.168.20.141) not yet found.

BEIGRP: Neighbor(192.168.20.141) not yet found.

BEIGRP: New neighbor 192.168.20.141

BEIGRP: Neighbor 202.117.80.143 went down on vlan 2 for manually cleared.

BEIGRP: Neighbor 192.168.20.141 went down on vlan 1 for manually cleared.

BEIGRP: New neighbor 192.168.20.204

BEIGRP: New neighbor 202.117.80.143

BEIGRP: New neighbor 192.168.20.141

related commands

debug ip beigrp fsm

33.4.1.6 debug ip beigrp packet

Syntax

To display BEIGRP packets situations, use the debug ip beigrp packet command in EXEC mode. debug ip beigrp packets [ack | hello | query | reply | retry | terse | update | error] no debug ip beigrp packets [ack | hello | query | reply | retry | terse | update | error]

Parameter

parameter	description
ack	(Optional) Traces ACK pacekts
hello	(Optional) Traces hello packets.
query	(Optional) Traces query packets.
reply	(Optional) Traces reply packets
retry	(Optional) Traces retry packets.
terse	(Optional) Traces all packets except hello packets.
update	(Optional) Traces update packets.
error	(Optional) Traces error packets.

default

none

Command mode

EXEC

Usage guidelines

It helps to find network malfunction using this command.

example

Г

router#debug ip beigrp packet

BEIGRP: Send HELLO packet to 224.0.0.10 via vlan 2 with Ack 0/0 BEIGRP: Receive ACK packet from 192.168.20.141 via vlan 1 with Ack 0/54 BEIGRP: Receive HELLO packet from 202.117.80.143 via vlan 2 with Ack 0/0 BEIGRP: Receive UPDATE packet from 192.168.20.204 via vlan 1 with Ack 142/0 BEIGRP: Send HELLO packet to 192.168.20.204 via vlan 1 with Ack 0/142 BEIGRP: Receive HELLO packet from 192.168.20.141 via vlan 1 with Ack 0/0 BEIGRP: Receive HELLO packet from 192.168.20.204 via vlan 1 with Ack 0/0 BEIGRP: Receive QUERY packet from 192.168.20.204 via vlan 1 with Ack 143/0 BEIGRP: Send HELLO packet to 192.168.20.204 via vlan 1 with Ack 0/143 BEIGRP: Send REPLY packet to 192.168.20.204 via vlan 1 with Ack 55/143 BEIGRP: Send UPDATE packet to 224.0.0.10 via vlan 2 with Ack 57/0 BEIGRP: Receive ACK packet from 192.168.20.204 via vlan 1 with Ack 0/55 BEIGRP: resend UPDATE packet for neighbor 192.168.20.204 with retry num 1. BEIGRP: Receive ACK packet from 202.117.80.143 via vlan 2 with Ack 0/57 BEIGRP: Send UPDATE packet to 202.117.80.143 via vlan 2 with Ack 57/77 BEIGRP: Send UPDATE packet to 224.0.0.10 via vlan 1 with Ack 56/0 BEIGRP: Receive ACK packet from 192.168.20.204 via vlan 1 with Ack 0/56 BEIGRP: Send UPDATE packet to 192.168.20.141 via vlan 1 with Ack 56/88 BEIGRP: Send UPDATE packet to 192.168.20.204 via vlan 1 with Ack 56/143 BEIGRP: Receive UPDATE packet from 202.117.80.143 via vlan 2 with Ack 79/0 BEIGRP: Send HELLO packet to 202.117.80.143 via vlan 2 with Ack 0/79 BEIGRP: Receive ACK packet from 192.168.20.204 via vlan 1 with Ack 0/56 BEIGRP: Send QUERY packet to 224.0.0.10 via vlan 1 with Ack 60/0 BEIGRP: Send UPDATE packet to 224.0.0.10 via vlan 1 with Ack 61/0

Fleld			Description	
Recv	/	Send	/	Receives, sends or enqueueings packet to send -queue
Enqueueing				

HELLO / UPDATE /	Packet types that are received or sent.
QUERY / ACK	
192.1.1.1	Neighbor IP address to send packet
vlan 2	In or out interface of packet
Ack 56/88	Acknowledgement number of packet/ sequence number of neighbor packet

related commands

debug ip beigrp fsm

33.4.1.7 debug ip beigrp transmit

Syntax

To display transmit event of BEIGRP packet, use the debug ip beigrp transmit command in EXEC mode. debug ip beigrp transmit [ack | build | link | packetize | peerdown | startup] no debug ip beigrp transmit [ack | build | link | packetize | peerdown | startup]

Parameter

parameter	description
ack	(Optional) Traces events
build	(Optional)Traces BUILD events.
link	(Optional)Traces LINK events
packetize	(Optional)Traces PACKETIZE events.
peerdown	(Optional)Traces PEERDOWN events
startup	(Optional)Traces STARTUP events.

default

none

Command mode

EXEC

Usage guidelines

It helps to find network malfunction using this command.

related commands

debug ip beigrp fsm

33.4.1.8 default-metric

Syntax

To reset the default vector metric for the Enhanced Interior Gateway Routing Protocol (BEIGRP), use the **default-metric** command. To restore the default state, use the no form of this command. **default-metric** *bandwidth delay reliability loading mtu* **no default-metric**

Parameter

parameter	description
bandwidth	Default bandwidth
delay	Default interface delay.
reliability	Default interface reliability
loading	Default interface load
mtu	The default value for the maximum transmission unit (MTU),

default

bandwidth: 128kpbs delay: 2000 (10ms) reliability: 255 (255 indicates 100%) loading: 255 (255 indicates 100%) mtu: 1500

Command mode

router configuration

Usage guidelines

it is generally used with redistribute command to specify default metrics of route of other routing protocols

KYLAND

assigned into BEIGRP. This command will trigger the new algorithm of related route that are previously assigned into BEIGRP.

Forwarding static route, straight connected route and BEIGRP protocol route, you can not configure default-metric command, or you must configure this command

Example

The following example shows how the redistributed Routing Information Protocol (RIP) metrics are translated into EIGRP metrics with values as follows: bandwidth = 200, delay = 100, reliability = 100, loading = 200, and MTU = 1500:

default-metric 200 1000 100 200 1500

related commands

redistribute

33.4.1.9 Distance

Syntax

To allow the use of two administrative distances (internal and external) that could be a better route to a node, use the distance beigrp command in routing switch configuration mode. To reset these values to their defaults, use the no form of this command.

distance beigrp internal-distance external-distance

no distance beigrp

distance weight *ip-address ip-address-mask* [*ip-access-list*] no distance weight *ip-address ip-address-mask* [*ip-access-list*]

Parameter

parameter	description
internal-distance	Administrative distance for Enhanced Internal Gateway Routing Protocol
	(BEIGRP) internal routes. The distance can be a value from 1 to 255.
external-distance	Administrative distance for EIGRP external routes. The distance can be a value
	from 1 to 255.
ip-address	BEIGRP neighbor IP address
ip-address-mask	BEIGRP neighbor IP address mask
ip-access-list	BEIGRP neighbor access list

default

internal-distance: 90 external-distance: 170

Command mode

router configuration

Usage guidelines

An administrative distance is to compare the priority of routes of different protocols. Therefore, adjustment on the administrative distance value of BEIGRP will affect the choice of routing switch to meet different demands od users

It is recommended to use standard access list when configuring filter list. The configured access list fails if configured with extended access list.

Example

router beigrp 2 network 192.10.0.0 255.255.0.0 distance beigrp 100 200

distance 110 192.31.7.0 255.255.255.0

distance 220 128.88.1.0 255.255.255.0

In the above example, the routing switch beigrp global configuration command sets up BEIGRP internal administrative and external administrative to 100 and 200. The network routing switch configuration commands specify BEIGRP routing on networks 192.31.7.0/24 and 128.88.1.0/24 to 110 and 220.

related commands

show ip protocol

33.4.1.10 Filter

Syntax

To allows us to filter the routes that learned or sent on the specified interface, use the filter command. Use the no form of this command to disable filter.

filter {interface-type interface-number | *} {in | out} {access-list access-list-name | gateway access-list-name |
prefix-list prefix-list-name}

no filter {interface-type interface-number | *} {in | out} {access-list access-list-name | gateway access-list-name |

prefix-list prefix-list-name}

Parameter

parameter	description
interface-type interface-number	Interface type and number
*	all intefaces
in	Applies access-list to the incoming routing update
out	Applies access-list to the ourcoming routing update
access-list	Applies standard access list to filter routes, to define which network is sent and which network is suppressed in routing update.
gateway	Filters gateway of route using standard access list.
access-list-name	Standard IP access list number or name
prefix-list	Filters route using the prefix-list
prefix-list-name:	Standard IP prefix- list-name. This list defines which networks are received and which are surpressed.

default

none

Command mode

router configuration

Usage guidelines

It is recommended to use standard access list when configuring filter list. The configured access list fails if configured with extended access list.

example

The following example permits only one network at 131.108.0.0 to be declared by BEIGRP routing process:

ip access-list standard 1 permit 131.108.0.0 255.255.0.0

!

router beigrp 64

filter * out access-list 1

network 131.108.0.0

33.4.1.11 beigrp log-neighbor-changes

Syntax

To enable the logging of changes in Enhanced Interior Gateway Routing Protocol (BEIGRP) neighbor adjacencies, use the beigrp log-neighbor-changes command in router configuration mode. To disable the logging of changes in BEIGRP neighbor adjacencies, use the no form of this command.

beigrp log-neighbor-changes no beigrp log-neighbor-changes

Parameter

none

default

disabled

Command mode

router configuration

33.4.1.12 beigrp router-id

Syntax

To set the routing switch ID used by Enhanced Interior Gateway Routing Protocol (BEIGRP), use the eigrp router-id command in router configuration mode. To remove the configured routing switch ID, use the no form of this command.

beigrp router-id ip-address

no beigrp router-id

Parameter

parameter	description
ip-address	Router ID in dotted decimal notation.

default

EIGRP automatically selects an IP address to use as the routing switch ID. Set the largest loopback interface as the routing switch ID if there is a loopback interface or set the largest direct-connect interface address as the the routing switch ID.

Command mode

router configuration

33.4.1.13 ip beigrp bandwidth-percent

Syntax

To configure the percentage of bandwidth that may be used by Enhanced Interior Gateway Routing Protocol (BEIGRP) on an interface, use the ip bandwidth-percent eigrp command. To restore the default value, use the no form of this command.

ip beigrp bandwidth-percent *percent* no ip beigrp bandwidth-percent

parameter

parameter	description
percent	Percent of bandwidth that EIGRP may use.

default

50%

Command mode

interface configuration mode

Usage guidelines

For low speed lines, you can adjust the configuration of this command to restrict the enabled bandwidth for BEIGRP to avoid that BEIGRP affect the normal data transmission.

Example

interface vlan 1

ip beigrp bandwidth-percent 100

The above example allows BEIGRP to use all bandwidth of the interface vlan 1.

related commands

bandwidth

33.4.1.14 ip beigrp hello-interval

Syntax

To configure the hello interval for an Enhanced Interior Gateway Routing Protocol (BEIGRP) process, use the ip hello-interval eigrp command in interface configuration mode. To restore the default value, use the no form of this command.

ip beigrp hello-interval seconds no ip beigrp hello-interval

Parameter

parameter	description
second	Hello interval (in seconds).

default

5 seconds-

Command mode

interface configuration mode

Usage guidelines

example

interface vlan 1

ip beigrp hello-interval 20

The above example sets 20 seconds as the hello interval for vlan 1:

related commands

ip beigrp hold-time

33.4.1.15 ip beigrp hold-time

Syntax

To configure the hold time for an Enhanced Interior Gateway Routing Protocol (BEIGRP) process, use the ip

hold-time eigrp command in interface configuration mode. To restore the default value, use the no form of this command.

ip beigrp hold-time seconds no ip beigrp hold-time

Parameter

parameter	description
second	Hold time is in seconds if do not receive any BEIGRP

default

15 seconds

Command mode

interface configuration mode

Usage guidelines

example

Interface vlan 1

ip beigrp hold-time 60

The above example sets 60 seconds the hold time for vlan 1:

related commands

ip beigrp hello-interval

33.4.1.16 ip beigrp passive

Syntax

To enable interacting BEIGRP routing update on a certain interface, use the ip beigrp passive command. Use the no form of this command to restore the default value.

ip beigrp passive

no ip beigrp passive

parameter

none

default

The interface is not in passive mode.

Command mode

interface configuration mode

Usage guidelines

If the ip beigrp passive is configured on an interface, then no routing update is received on this interface, and also no neighborhood relation is established between this interface and any accessible neighbors. But a direct route genereate on this interface will be broadcast by other interface that runs the BEIGRP.

example

The following command set vlan 1 as the passive interface:

interface vlan 1

ip beigrp passive

33.4.1.17 ip beigrp split-horizon

Syntax

To enable Enhanced Interior Gateway Routing Protocol (BEIGRP) split horizon, use the ip beigrp split-horizon command in interface configuration mode. To disable split horizon, use the no form of this command. **ip beigrp split-horizon no ip beigrp split-horizon**

. . . .

Parameter

none

default

The behavior of this command is enabled by default.

Command mode

interface configuration mode

Usage guidelines

Using this command is to prevent route cycle, so you must confirm that it will not cause any bad effects before turn off the split horizon.

example

interface vlan 1

no ip beigrp split-horizon

The above example disables split horizon on vlan 1:

33.4.1.18 metric weights

Syntax

To tune Enhanced Interior Gateway Routing Protocol (BEIGRP) metric calculations, use the metric weights command. To reset the values to their defaults, use the no form of this command

metric weight k1 k2 k3 k4 k5

no metric weight

Parameter

parameter	description
k1,k2,k3,k4,k4	Constants that convert an EIGRP metric vector into a scalar quantity.

default

k1: 1 k2: 0 k3: 1 k4: 0 k5: 0

Command mode

router configuration

Usage guidelines

The tuning of the EIGRP metric calculation for a composite metric adopts two steps:

If k5 equals 0, the composite EIGRP metric is computed according to the following formula:

Composite metric = K1*BW*256 + K2 * BW/(256 - load) + K3 * DLY * 256,

BW 10Gbps/ bandwidth

DLY Delay time, 10 milliseconds

If k5 does not equal zero, an additional operation is performed:

Composite metric = Composite metric * K5/(reliability + K4)

K2, K4 and K5 are the left objects of IGRP, compatible with Eigrp protocol of Cisco. In general, Load and Reliability are not used in composite metric algorithm. Therefore, do not change the default value of K2, K4 and K5, unless you confirm that will not cause bad effect, to prevent unexpected result on route decision

example

router beigrp 2

network 131.108.0.0 255.255.0.0

metric weights 2 0 2 0 0

related commands

bandwidth delay

33.4.1.19 Network

Syntax

To specify the network for an Enhanced Interior Gateway Routing Protocol (BEIGRP) routing process, use the network command in routing switch configuration mode. To remove an entry, use the no form of this command. **network** *network-number* [*netmask*] **no network** *network-number* [*netmask*]

Parameter

parameter	description
network-number	Network address.
netmask	Network mask.

default

none

Command mode

router configuration

Usage guidelines

Various network statements (network commands) can be configured on a routing switch, to enable BEIGRP dynamic routing protocol to run on many networks; use the default mask if there is no configured mask.

example

router beigrp 2

network 131.108.0.0 255.255.0.0

network 122.11.2.0

related commands

router beigrp

33.4.1.20 Offset

Syntax

To add an offset to incoming and outgoing metrics to routes learned via Enhanced Interior Gateway Routing Protocol (BEIGRP), use the offset command in router configuration mode. To remove an offset list, use the no form of this command.

offset {type number | *} {in | out} access-list-name offset
no offset {type number | *} {in | out}

Parameter

parameter	description
In	Applies the access list to incoming metrics.
Out	Applies the access list to outgoing metrics.
access-list-name	Standard access list name to be applied
Offset	Positive offset to be applied to metrics for networks matching the access list.
Туре	(Optional) Interface type to which the offset list is applied.
Number	(Optional) Interface number to which the offset list is applied.

default

none

Command mode

router configuration

Usage guidelines

The offset value is added to the routing metric. An offset list with an interface type and interface number is considered extended and takes precedence over an offset list that is not extended. Therefore, if an entry passes the extended offset list and the normal offset list, the offset of the extended offset list is added to the metric. BEIGRP is a vector metric, so the offset is added to delay

It is recommended to use standard access list when configuring filter list. The configured access list fails if configured with extended access list

example

In the following example, the router applies an offset of 10 to the delay component of the router only to access list 21:

offset * out 21 10

In the following example, the router applies an offset of 10 to routes learned from Ethernet interface 0:

offset e0/0 in 21 10

related commands

ip access-list

33.4.1.21 redistribute

Syntax

To redistribute routes from other routing protocols into the local BEIGRP routing process routing table, use the redistribute command.

redistribute protocol process route-map name redistribute protocol process [route-map]

Parameter

parameter	description
protocol	Source protocol from which routes are being redistributed. It must be one of
	following keywords: bgp, ospf, static , connected, and rip.
process	(Optional) For bgp or bigp, this parameter indicates the 16-digit autonomous
	number. For OSPF, this parameter indicates the relevant OSPF process ID of the
	routes need to be redistributed. This marks the rouing process. It is a non-zero
	decimal number. For rip, there is no need to mark the process.
route-map	(Optional) Identifier of a configured route map. The route map should be
	examined to filter the importation of routes from this source routing protocol to

	IS-IS. If not specified, all routes are redistributed. If the keyword is specified, but
	no route map tags are listed, no routes will be imported.
name	Name character string of route-map

default

none

Command mode

BEIGRProuter configuration

Usage guidelines

To redistribute direct routes, static routes and routes from other BEIGRP process, the default-metric command is not necessarily to be configured; otherwise, the default-metric must be configured.

example

default-metric 64 250 255 255 1500

redistribute ospf 1

33.4.1.22 router beigrp

Syntax

To configure the Enhanced Interior Gateway Routing Protocol (EIGRP) process, use the router beigrp command in global configuration mode. To delete the BEIGRP routing process, use the no form of this command. **router beigrp** *autonomous-system-number* [vrf vrf-name] **no router beigrp** *autonomous-system-number* [vrf vrf-name]

Parameter

parameter	description
autonomous-system-nu	Autonomous system number that identifies the routes to the other BEIGRP
mber	routers.
vrf-name	Specifies the VRF to which the BEIGRP process belongs.

default

none

Command mode

global configuration mode

Usage guidelines

This command can be used to operate multiple BEIGRP processes.

example

The following example configures EIGRP process 30:

router beigrp 30

related commands

network

33.4.1.23 show ip beigrp interface

Syntax

To display information about interfaces configured for Enhanced Interior Gateway Routing Protocol (EIGRP), use the show ip beigrp interfaces command.

show ip beigrp interfaces [interface-type *interface-number* | *as-number*]

Parameter

parameter	description
as-number	Autonomous system number. If the parameter is specified, it will display only the neighbour of BEIGRP process
interface	Interface name. If the parameter is specified, it will display only the neighbour on this BEIGRP interface

default

none

Command mode

All configuration modes except user mode.

Usage guidelines

Use the show ip eigrp interfaces command to learn information about BEIGRP dynamic routing relating to those

interfaces.

related commands

None

33.4.1.24 show ip beigrp neighbors

Syntax

To display neighbors discovered by Enhanced Interior Gateway Routing Protocol (BEIGRP), use the show ip eigrp neighbors command in EXEC mode.

show ip beigrp neighbors [interface-type interface-number | as-number] [detail]

Parameter

parameter	description
as-number	Autonomous system number. If the parameter is specified, it will display only the
	neighbour of BEIGRP process
interface	Interface name. If the parameter is specified, it will display only the neighbour on this BEIGRP interface
detail	Displays detailed neighbor information.

default

none

Command mode

All configuration modes except user mode.

Usage guidelines

Use the show ip beigrp neighbors command to determine what neighbours they are and when neighbors become active and inactive. It is also useful for debugging certain types of transport problems.

example

Router# show ip beigrp neighbors

Information of BEIGRP neighbors with AS 1024

Address interface hold uptime Q_cnt Seq

192.168.20.204 vlan 1 15 00:08:06 0 159

202.117.80.143 vlan 2 10 00:08:05 0 100

192.168.20.141 vlan 1 12 00:07:38 0 254

field	explanation
AS 64	Autonomous system number
Address	IP address of the BEIGRP peer.
Interface	Interface on which the router is receiving hello packets from the peer.
Hold	Length of time that the software will wait to hear from the peer before declaring
	it down.
Uptime	Elapsed time since the local router first heard from this neighbor.
Q Count	Number of EIGRP packets that the software is waiting to send.
Seq	Sequence number of the last update that was received from this neighbor.

related commands

None

33.4.1.25 show ip beigrp protocol

Syntax

To display the Enhanced Interior Gateway Routing Protocol (BEIGRP) routing protocol process parameter and statistics, use the show ip beigrp protocols command.

show ip beigrp protocols [as-number]

Parameter

parameter	description
as-number	(Optional) Autonomous system number. If the parameter is specified, it will
	display only the parameters and statistics of this BEIGRP process

Command mode

All configuration modes except user mode.

Usage guidelines

This command can be used to check BEIGRP topology table at any time.

example

R142#show ip bei pro Protocol Information of BEIGRP with AS 1024:

Metric Weight: K1=1, K2=0, K3=1, K4=0, K5=0.

Filter * in access-list in12

Filter * out access-list ou12

Offset * in in23 12

Offset * out ou23 12

Redistributing: connect, ospf 1, ospf 2

Automatic network summarization is enable.

Active-time: 3(minutes)

Routing for Networks:

192.168.20.0/24

10.0.0/8

167.20.0.0/16

202.117.80.0/24

Distance: internal 90, external 170

Active Route:

related commands

None

33.4.1.26 show ip beigrp topology

Syntax

To display entries in the Enhanced Interior Gateway Routing Protocol (EIGRP) topology table, use the show ip beigrp topology command in privileged EXEC mode.

show ip beigrp topology [[as-number active | all-links | pending | summary | zero-successors]| [network-number subnet-mask]]

Parameter

parameter	description
as-number	(Optional) Autonomous system number. If the parameter is specified, it will

	display only the topology table of BEIGRP process
network-number	Displays detailed information about the specified network.
subnet-mask	(Optional) Subnet mask.
active	(Optional) Displays only active entries in the BEIGRP topology table.
all-link	(Optional) Displays all entries in the BEIGRP topology table.
pending	(Optional) Displays all entries in the BEIGRP topology table that are waiting for an
	update from a neighbor or are waiting to reply to a neighbor.
summary	(Optional) Displays a summary of the BEIGRP topology table.
zero-successors	(Optional) Displays available routes in the EIGRP topology table.

default

none

Command mode

All configuration modes except user mode.

Usage guidelines

This command can be used to check BEIGRP topology table at any time.

example

Router# show ip beigrp topology

P 10.10.10.0/24 successors: 1 FD: 13056

via connect(Loopback1) Metric: 13056/0

P 167.20.0.0/16 successors: 1 FD: 261132

via 202.117.80.143(vlan 1) Metric: 261132/258560

P 192.166.100.0/24 successors: 1 FD: 281856

via redistribute Metric: 281856/0

P 192.168.20.0/24 successors: 1 FD: 258560

via connect(vlan 2) Metric: 258560/0

P 202.1.1.0/24 successors: 1 FD: 297246988

via 192.168.20.204(vlan 2) Metric: 297246988/297244416

P 202.117.80.0/24 successors: 1 FD: 258560

via connect(vlan 1) Metric: 258560/0

A 202.117.93.0/24 successors: 1 FD: unaccessible, R serno: 32

via 192.168.20.141(vlan 2) Metric: 271372/13056

SIA-Info: (active: 00:02:20 query-origin: Local origin)

Unreplied Neighbors:

via 202.117.80.143, vlan 1

P 202.192.168.0/24 successors: 1 FD: 284172

via 192.168.20.204(vlan 2) Metric: 284172/281600

field	description
160.89.90.0 and so	Destination network number
on	
255.255.255.0	Destination network mask
successors	Number of successors.
FD	Feasible distance.
Via	Gateway address
vlan 2	Interface from which this information was learned.
SIA-Info	active routing information
active	Lasting time when entering Active status.
query-origin	Origin of entering query state
Unreplied Neighbors	Neighbor lists that are not received reply.

related commands

None

33.4.1.27 show ip beigrp traffic

Syntax

To display the flow information of Enhanced Interior Gateway Routing Protocol (BEIGRP) packets sent and received, use the show ip beigrp traffic command in EXEC mode. show ip beigrp traffic [as-number]

Parameter

parameter	description
as-number	(Optional) Autonomous system number. If the parameter is specified ,then
	display the flow statistics information

default

none

Command mode

All configuration modes except user mode.

Usage guidelines

Use this command to check the flow statistics information of BEIGRP packets sent and received at any time.

example

R142#show ip bei tra

Traffic Statistics of BEIGRP 1024

Packet Type Hello Update Query Reply ACK

Send/Receive 770/1021 133/44 29/7 7/9 60/147

related commands

None

33.5 **OSPF Configuration Commands**

33.5.1 **OSPF Configuration Commands**

OSPF Configuration Commands Include:

- area authentication
- area default-cost
- area filter
- area nssa
- area nssa-range
- area nssa-translate-interval

- area range
- area stub
- area virtual-link
- auto-cost
- bfd all-interfaces
- debug ip ospf adj
- debug ip ospf events
- debug ip ospf flood
- debug ip ospf lsa-generation
- debug ip ospf packet
- debug ip ospf restart
- debug ip ospf retransmission
- debug ip ospf spf
- debug ip ospf tree
- default-information originate
- default-metric
- distance
- distance ospf
- filter
- graceful-restart
- ip ospf authentication
- ip ospf cost
- ip ospf dead-interval
- ip ospf demand-circuit
- ip ospf hello-interval
- ip ospf message-digest-key
- ip ospf mib-binding
- ip ospf network
- ip ospf passive
- ip ospf password
- ip ospf priority
- ip ospf retransmit-interval
- ip ospf transmit-delay
- limit max-ext-lsa
- limit retransmissions
- maximum-paths
- neighbor

- network area
- redistribute
- restart ospf
- router-id
- router ospf
- show ip ospf
- show ip ospf border-routers
- show ip ospf database
- show ip ospf interface
- show ip ospf neighbor
- show ip ospf virtual-link
- stub-router
- summary-address
- timers delay-timer
- timers hold-timer
- timers age-timer

33.5.1.1 area authentication

Syntax

To enable authentication for an Open Shortest Path Firstly (OSPF) area, use the area authentication command in routing switch configuration mode. To remove an authentication specification of an area or a specified area from the configuration, use the no form of this command.

area area-id authentication {simple | message-digest}

no area area-id authentication

no area area-id

Parameter

parameter	description
area-id	Identifier of the area for which authentication is to be enabled.
simple	(Optional)authentication information, Plain text authentication
message-digest	(Optional) Enables Message Digest 5 (MD5) authentication on the area specified by the area-id argument.

Default value

no authentication of interface receiving OSPF packet by default

Command mode

router configuration

Usage guidelines

The authentication value will be added into OSPF packet. The authentication type of all routing switches in the same area must be the same. The authentication password for all OSPF routing switches on a network must be the same if they are to communicate with each other via OSPF.

Example

The following example mandates authentication simple for areas 0 and 36.0.0.0.

```
interface VLAN1

ip address 131.119.251.201 255.255.255.0

ip ospf password 0 adcdefgh

!

interface VLAN2

ip address 36.56.0.201 255.255.0.0

ip ospf password 0 ijklmnop

!

router ospf 1

network 36.0.0.0 255.0.0.0 area 36.0.0.0

network 131.119.0.0 255.255.0.0 area 0

area 0 authentication simple

area 36.0.0.0 authentication simple
```

Related commands

ļ

ip ospf password ip ospf message-digest-key

33.5.1.2 area default-cost

Syntax

To specify a cost for the default summary route that is sent into a stub area or not-so-stubby area (NSSA), use the area default-cost command in router address family topology or routing switch configuration mode. To remove the assigned default route cost, use the no form of this command.

area area-id default-cost cost no area area-id default-cost no area area-id

Parameter

parameter	description
area-id	Identifier for the stub area.
cost	Cost for the default summary route used for a stub

Default value

cost.1

Command mode

OSPF Routing configuration mode

Usage guidelines

This command is used only on an routing switch attached to a stub area or NSSA.

After configured the area stub default-information-originate command, the routing switch will send LSA(SUM-NER-LSA) including default router information to correspondent field, the cost configured I this command is the correspondent cost used in LSA.

Note:

To remove the specified area from the software configuration, use the no area area-id command (without other keywords). That is, the no area area-id command removes all area options, such as area authentication, area default-cost, area nssa, area range, area stub, and area virtual-link.

Example

The following example assigns a default cost of 20 to stub network 36.0.0.0:

```
ļ
```

interface VLAN2

ip address 36.56.0.201 255.255.0.0

ļ

router ospf 201

network 36.0.0.0 255.0.0.0 area 36.0.0.0

area 36.0.0.0 default-cost 20

area 36.0.0.0 stub

ļ

Related commands

area nssa

area stub

33.5.1.3 area filter

Syntax

To filter Type-3 LSA of in/out this area, run the following command. To return to the default setting, use the no form of this command.

area area-id filter {in |out} {access-list access-list-name | prefix-list prefix-list-name} no area area-id filter {in | out}

no area area-id

Parameter

Parameter	Description
area-id	Domain which filters Type-3 LSA. It can be a decimal numeral or an ip address.
in	In ABR, filter Type-3 LSA sent to this area.
out	In ABR, filter Type-3 LSA sent from this area to other areas.
access-list-name	Name of access list
prefix-list-name	Name of prefix list

Default value

Disabled

Command mode

OSPF Routing configuration mode

Usage guidelines

The command only works on the ABR, but is not available to the area inner route. In direction **in**, Type-3 LSA of ABR sent to this area does not include the filtered network segment. This rule is also applicable to area-range segment of other areas; in direction **out**, Type-3 LSA of ABR sent to this area does not include the filtered network segment. If all sub-segments covered by an area-range are filtered, the area-range will not generate Type-3 LSA.

Note:

no area area-id (no other parameters)

KYLAND

The command can be used to cancel sub-commands of all domain parameters, such as area authentication, area default-cost, area filter, area nssa, area nssa-translate-interval, area nssa-range, area range, area stub, and area virtual-link.

Example

The following example shows how to configure area 36.0.0.0 which neither receives Type-3 LSA including in 192.0.0.0/8, nor generates Type-3 LSA including in 36.0.0.0/8.

ļ

```
interface VLAN1
```

```
ip address 192.42.110.201 255.255.255.0
```

ļ

interface VLAN2

ip address 36.56.0.201 255.255.0.0

ļ

router ospf 201

```
network 36.0.0.0 255.0.0.0 area 36.0.0.0
```

network 192.0.0.0 255.0.0.0 area 0

area 36.0.0.0 filter in prefix-list 1

area 36.0.0.0 filter out prefix-list 2

ļ

ļ

```
ip prefix-list 1 seq 5 deny 192.0.0.0/8
```

```
ip prefix-list 2 seq 5 deny 36.0.0/8
```

ļ

Related command

area authentication

33.5.1.4 area nssa

Syntax

To configure a NSSA area, run the following command. To return to the default setting, use the no form of this command.

area *area-id* nssa [default-information-originate [metric value | metric-type {1 | 2}] |no-redistribute | no-summary | translate-always]

no area *area-id* nssa [default-information-originate | no-redistribute | no-summary | translate-always] no area *area-id*

Parameter

Parameter	Description
area-id	Area-ID of NSSA. It can be a decimal numeral or an ip address.
default-information-or iginate	(Optional) For ABR, if this command is configured but without configuring command no-summany , whether there is a default route, one Type-7 LSA will be generated to send the default route to the area; if command no-summany is configured, a Type-3 LSA will be generated to send the default route to the area. For ASBR, after configuration, only when the main routing table has a default route can Type-7 LSA be generated to sent a default route to the area.
metric	(Optional) default metric
metric-type	(Optional) default metric type of the route
no-redistribute	(Optional) The command is used to diable introduce AS outer route to NSSA by the form of Type-7 LSA. Usually it is only used in ABR of NSSA and ASBR or OSPF.
no-summary	(Optional) The command is only used in ABR of NSSA and disable ABR router forwarding Type-3 LSA to NSSA. After configuration, NSSA ABR send one default route to the area by generating one Type-3 LSA and does not send other Type-3 LSA to the area (The area is also called NSSA Totally Stub).
translate-always	(Optional) Only used for ABR of NSSA domain. ABR works for translating Type-7 LSA into Type-5 LSA.

Default value

Non-NSSA area

Command mode

OSPF Routing configuration mode

Usage guidelines

The command "area nssa" must be configured on all routers and acess servers in NSSA area.

For further decreasing the amount of LSA, use command **no-summary** to sending summarizing LSA to NSSA on ABR.

Note:

no area area-id (no other parameters)

The command can be used to cancel sub-commands of all domain parameters, such as area authentication, area default-cost, area filter, area nssa, area nssa-translate-interval, area nssa-range, area range, area stub, and area

virtual-link.

Example

The following example shows how to configure 36.0.0.0 as NSSA area.

!

interface VLAN2

ip address 36.56.0.201 255.255.0.0

!

router ospf 201

network 36.0.0.0 255.0.0.0 area 36.0.0.0

area 36.0.0.0 nssa

redistribute static

ļ

Related command

area authentication

area default-cost

redistribute

```
33.5.1.5 area nssa-range
```

Syntax

To translate Type-7 LSA for route aggregation, run the following command. To return to the default setting, use the no form of this command.

area area-id nssa-range address mask [advertise | not-advertise | tag value] [cost cost] [cost cost_value] no area area-id nssa-range address mask

no area area-id

Parameter

Parameter	Description
area-id	Domain of Type-7 LSA route aggregation. It can be a decimal numeral or an ip address.
address	Destination IP address of the aggregation route.
mask	The network mask of aggregation route.

advertise	(Optional) Advertise after aggregation.
not-advertise	(Optional) Not-advertise after aggregation
tag	(Optional) Tag of aggregation route.
value	Route tag. The value ranges from 0 to 4294967295. The default value is 0.
cost	(Optional) Cost of aggregation route
cost_value	Cost value of aggregation route. The value ranges from 0 to 16777215. The default value is the max cost of all aggregated route.

Default value

Disabled

Command mode

OSPF Routing configuration mode.

Usage guidelines

The command can only be configured on the non-trunk domain.

If the local router is ABR and the translation router of NSSA, the command "area nssa-rang" will aggregates Type-7 LSA and generates Type-5 LSA; for translation router not in the NSSA, there is no aggregation.

Note:

no area area-id (no other parameters)

The command can be used to cancel sub-commands of all domain parameters, such as area authentication, area default-cost, area filter, area nssa, area nssa-translate-interval, area nssa-range, area range, area stub, and area virtual-link.

Example

The following example shows how to configure route aggregation of translatable Type-7 LSA in segment 50.0.0.0 of ABR.

ļ

interface VLAN1

```
ip address 192.42.110.201 255.255.255.0
```

ļ

interface VLAN2

```
ip address 36.56.0.201 255.255.0.0
```

ļ

i

router ospf 201

network 36.0.0.0 255.0.0.0 area 36.0.0.0

network 192.0.0.0 255.0.0.0 area 0

area 36.0.0.0 nssa

area 36.0.0.0 nssa-range 50.0.0.0 255.0.0.0

ļ

Related command

area nssa

33.5.1.6 area nssa-translate-interval

Syntax

To configure a time interval a translater elected by Type-7 LSA works after being replaced by another one. To return to the default setting, use the no form of this command.

area area-id nssa-translate-interval interval

no area area-id nssa-translate-interval

no area area-id

Parameter

Parameter	Description
area-id	Area-ID of NSSA. It can be a decimal numeral or an ip address.
interval	Time interval. Unit: s

Default value

40s

Command mode

OSPF Routing configuration mode

Usage guidelines

The command can only be configured on the non-trunk area.

Note:

KYLAND

no area area-id (no other parameters)

The command can be used to cancel sub-commands of all domain parameters, such as area authentication, area default-cost, area filter, area nssa, area nssa-translate-interval, area nssa-range, area range, area stub, and area virtual-link.

Example

The following example shows how to configure the time interval of area 36.0.0.0 to 100s.

```
ļ
```

interface VLAN1

ip address 36.56.0.201 255.255.0.0

!

router ospf 201

```
network 36.0.0.0 255.0.0.0 area 36.0.0.0
```

area 36.0.0.0 nssa

```
area 36.0.0.0 nssa-translate-interval 100
```

redistribute static

ļ

Related command

area nssa

33.5.1.7 area range

Syntax

To consolidate and summarize routes at an area boundary, use the **area range** command. To disable this function, use the no form of this command.

area area-id range address mask [advertise | not-advertise] [cost value]

no area area-id range address mask

no area area-id

Parameter

parameter	description
area-id	Identifier of the area for which routes are to be summarized. It can be specified
	as either a decimal value or an IPv6 prefix.

address	IP address
mask	IP address mask
advertise	(Optional) Sets the address range status to advertise and generates a Type 3 summary link-state advertisement (LSA).
not-advertise	(Optional) Sets the address range status to DoNotAdvertise. The Type 3 summary LSA is suppressed, and the component networks remain hidden from other networks.

Default value

This command is disabled by default.

Command mode

OSPF Routing configuration mode

Usage guidelines

The area range command is used only with Area Border Routing switches. It is used to consolidate or summarize routes for an area. The result is that a single summary route is advertised to other areas by the ABR. Routing information is condensed at area boundaries. External to the area, a single route is advertised for each address range. This behavior is called route summarization.

Multiple area range routing switch configuration commands can be configured. Thus, OSPF can summarize addresses for many different sets of address ranges.

Note: To remove the specified area from the software configuration, use the no area area-id command (with no other keywords). That is, the no area area-id command removes all area options, such as area default-cost, area nssa, area range, area stub, and area virtual-link.

Example

The following example specifies one summary route to be advertised by the ABR to other areas for all subnets on network 36.0.0.0 and for all hosts on network 192.42.110.0:

```
ļ
```

interface VLAN1

ip address 192.42.110.201 255.255.255.0

no ip directed-broadcast

ļ

interface VLAN2

ip address 36.56.0.201 255.255.0.0

no ip directed-broadcast

ļ

router ospf 201

network 36.0.0.0 255.0.0.0 area 36.0.0.0

network 192.0.0.0 255.0.0.0 area 0

area 0 range 192.42.110.0 255.255.255.0

area 36.0.0.0 range 36.0.0.0 255.0.0.0

!

33.5.1.8 area stub

Syntax

To define an area as a stub area, use the area stub command. To disable this function, use the no form of this command.

area area-id stub [no-summary] no area area-id stub no area area-id

Parameter

parameter	description
area-id	Identifier for the stub area; either a decimal value or an IP address.
no-summary	(Optional) Prevents an Area Border Router (ABR) from sending summary link advertisements into the stub area.

Default value

No stub area is defined.

Command mode

OSPF Routing configuration mode

Usage guidelines

You must configure the area stub command on all routers and access servers in the stub area. Use the area router configuration command with the default-cost keyword to specify the cost of a default internal route sent into a stub area by an ABR switch.

There are two stub area router configuration commands: the stub and default-cost options of the area routing

switch configuration command. In all routing switches attached to the stub area, the area should be configured as a stub area using the stub keyword of the area command. Use the default-cost keyword only on an ABR attached to the stub area. The default-cost keyword provides the metric for the summary default route generated by the ABR into the stub area.

To further reduce the number of link-state advertisements (LSAs) sent into a stub area, you can configure the no-summary keyword on the ABR switch to prevent it from sending summary LSAs (LSA type 3) into the stub area. **Note:** To remove the specified area from the software configuration, use the no area area-id command (with no other keywords). That is, the no area area-id command removes all area options, such as area authentication, area default-cost, area nssa, area range, area stub, and area virtual-link.

Example

The following example assigns a default cost of 20 to stub network 36.0.0.0:

```
!
```

```
interface VLAN2
```

```
ip address 36.56.0.201 255.255.0.0
```

```
!
```

```
ļ
```

router ospf 201

```
network 36.0.0.0 255.0.0.0 area 36.0.0.0
```

area 36.0.0.0 default-cost 20

area 36.0.0.0 stub

ļ

Related commands

```
area authentication area default-cost
```

33.5.1.9 area virtual-link

Syntax

To define a virtual link, use the area virtual-link command

areaarea-idvirtual-linkneighbor-ID[authenticationsimple|message-digest][dead-intervaldead-value][hello-intervalhello-value][retransmit-intervalretrans-value][transmit-delaydly-value][password[0|7]pass-string][message-digest-keykey-idMD5[0|7]md5-string]

no area area-id **virtual-link** neighbor-ID [authentication] [dead-interval [hello-interval] [retransmit-interval][transmit-delay][password] [message-digest-key key-id]

Parameter

parameter	description
area-id	Area ID assigned to the transit area for the virtual link.
neighbor-id	Router ID associated with the virtual link neighbor.
simple	Plain text authentication. The value must be the same for all routing switches and access servers attached to a common network.
message-digest	Enables Message Digest 5 (MD5) on virtual-link. The value must be the same for all routing switches and access servers attached to a common network.
dead-value	Time (in seconds) that hello packets are not seen before a neighbor declares the router down. The value must be the same for all routing switches and access servers attached to a common network.
hello-value	Time (in seconds) between the hello packets that the software sends on an interface. The value must be the same for all routing switches and access servers attached to a common network.
retrans-value	Time (in seconds) between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface. The value must be the same for all routing switches and access servers attached to a common network.
dly-value	Delay value in seconds to inform LSA on virtual-link for a routing switch. The configured value on both sides of the virtual-link should be the same.
pass-string	If virtual-link uses plain text authentication, the the maximum character of the configured password should be 8. The configuied value on both sides of the virtual-link should be the same.
key-id	If virtual-link uses MD5 authentication, the valid range of the used MD5 key should from 1 to 255. The configured value on both sides of the virtual-link should be the same.
MD5-String	Configures MD5 password, which is 16-character at most. The configured value on both sides of the virtual-link should be the same.
0 7	Designate the key type: plaintext (0) or ciphertext (7).

Default value

No virtual-link is configured. Default value of other parameters are as follows: Hello-value: 10s, Dead-value : 40s, Retrans-value : 5s, dly-value : 1s, no authentication

Command mode

OSPFrouter configuration

Usage guidelines

To establish a virtual link, user should configure both sides of the virtual link. The virtual link will fail if this command is only configured on one side.

The parameter-id must be a non-zero character, for the virtual link and the transit areda must be a non-backbone area. The configured area-id of the virtual link must be the same.

The neighbor-ID must be the same as the ospf router-id on the remote side during configuration, or the virtual link will not be established. Even if the configured neighbor-ID is another IP address of the other side.

You must make sure that all parameters on both sides must be the same.

The authentication parameters that configured on virtual-link become effective only when configured authentication types of virtual-link or configured the relevant authentication methods in backbone are (via the command area authentication)Only one kind of authentication parameter can be configured on virtual-link, that is, the MD5 and the plain text authenticationm are mutually exclusive.

Use the command no area area-id veitual-link neighbor-ID to cancel the formerly-configured virtual link.

Use the command show ip ospf virtual-link to check state of the virtual link.

Note:

no area area-id (no other parameters)

The command can be used to cancel sub-commands of all domain parameters, such as area authentication, area default-cost, area filter, area nssa, area nssa-translate-interval, area nssa-range, area range, area stub, and area virtual-link.

Example

The following example configured a virtual link between router A and router B: The configuration on router A (router-id: 200.200.200.1):

```
ļ
```

router ospf 100

network 192.168.20.0 255.255.255.0 area 1

area 1 virtual-link 200.200.200.2

ļ

The configuration on router B(router-id: 200.200.200.2):

```
ļ
```

router ospf 100

network 192.168.30.0 255.255.255.0 area 1

area 1 virtual-link 200.200.200.1

ļ

Related commands

show ip ospf virtual-link

33.5.1.10 auto-cost

Syntax

To configure reference-bandwidth value, run the following command. To return to the default setting, use the no form of this command.

auto-cost reference-bandwidth *value* no auto-cost reference-bandwidth

Parameter

Parameter	Description
value	Reference-bandwidth value for calculating link cost. The value
	ranges from 1 to 4294967. Unit: Mbps

Default value

100Mbp

Command mode

OSPF Routing configuration mode

Usage guidelines

If the command is not configured, OSPF calculates cost according to the link bandwidth(cost is equal to bandwidth reference value divided by bandwidth; if the cost is larger than 65535. The max cost is 65535). If the command is configured, OSPF does not calculate cost based on the link bandwidth, but based on the

configured link.

The following example shows how to configure the bandwidth reference of the link to 1000Mbps:

ļ

interface VLAN2

ip address 36.56.0.201 255.255.0.0

ļ

router ospf 201

auto-cost reference-bandwidth 1000

```
network 36.0.0.0 255.0.0.0 area 36.0.0.0
```

ļ

Related command

ip ospf cost

33.5.1.11 bfd all-interfaces

Syntax

To enable bfd linkage function on all ospf interfaces, use the **bfd all-interfaces** command. To restore the default value, use the **no bfd all-interfaces** command.

bfd all-interfaces

no bfd all-interfaces

Parameter

None

Default

No bfd linkage

Command mode

OSPF Routing configuration mode

Usage guidelines

Configuring bfd all-interfaces will enable the bfd linkage function of all ospf interfaces, except for interfaces configured with the **ip ospf bfd disable** command. Command **bfd all-interfaces** is usually configured when there are many ospf interfaces.

Example

The following example shows how to configure the bfd function of the ospf interface(except for vlan2).

interface VLAN1

ip address 36.56.0.201 255.255.0.0

ļ

interface VLAN2

ip address 36.57.0.201 255.255.0.0

ip ospf bfd disable

ļ

interface VLAN3

ip address 36.58.0.201 255.255.0.0

!

router ospf 201

router-id 1.2.2.1

network 36.0.0.0 255.0.0.0 area 36.0.0.0

bfd all-interfaces

ļ

Related command

ip ospf bfd

33.5.1.12 debug ip ospf adj

Syntax

To monitor Open Shortest Path Firstly (OSPF)-related estabilishment process , use the debug ospf adj command debug ip ospf adj

Parameter

none

Default

none

Command mode

EXEC

Usage guidelines

User can check the process of OSPF-related estabilishment process from the output of this command.

Example

Switch # debug ip ospf adj

OSPF[1]: Interface 0.0.0.0 on VLAN1 going Up

OSPF[1]: 2 Way Communication to 192.85.1.5 on VLAN1, state 2WAY

OSPF[1]: 2 Way Communication to 1.1.1.1 on VLAN1, state 2WAY

OSPF[1]: Interface 0.0.0.0 on VLAN1 Waittmr expired

OSPF[1]: NBR 1.1.1.1 on VLAN1 Adjacency OK, state EXSTART.

OSPF[1]: NBR 192.85.1.5 on VLAN1 Adjacency OK, state EXSTART.

OSPF[1]: NBR 192.85.1.5 Negotiation Done. We are the SLAVE. seq 0x25c83

OSPF[1]: NBR 192.85.1.5 on VLAN1 Negotiation Done. We are the SLAVE

OSPF[1]: Exchange Done with 192.85.1.5 on VLAN1

OSPF[1]: Loading Done with 192.85.1.5 on VLAN1, database Synchronized (FULL)

OSPF[1]: Loading Done with Nbr 192.85.1.5 on VLAN1, database Synchronized (FULL)

OSPF[1]: NBR 192.85.1.4 Negotiation Done. We are the MASTER. seq 0x12b

OSPF[1]: NBR 1.1.1.1 on VLAN1 Negotiation Done. We are the MASTER

OSPF[1]: Exchange Done with 1.1.1.1 on VLAN1

OSPF[1]: Loading Done with 1.1.1.1 on VLAN1, database Synchronized (FULL)

OSPF[1]: Loading Done with Nbr 1.1.1.1 on VLAN1, database Synchronized (FULL)

.....

33.5.1.13 debug ip ospf events

Syntax

To monitor OSPF interface and OSPF-related events, , use the debug ip ospf events command. **debug ip ospf events**

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

To display OSPF interface and OSPF-related adjacency events from the ouput of this command.

Example

Switch # debug ip ospf events

OSPF: Receive [MSG_OSPF_PROTO_UP] message, index=26

OSPF[1]: Interface VLAN1 going Up

OSPF: INTF(192.85.1.0) event INTF_UP

OSPF[1]: Interface 192.85.1.0 on VLAN1 going Up

OSPF: Receive [MSG_OSPF_TASKPOLICY_CHANGE] message

OSPF: NBR(192.85.1.5) event HELLO_RX

OSPF: NBR(192.85.1.4) event HELLO_RX

OSPF: NBR(192.85.1.4) event TWOWAY

OSPF[1]: 2 Way Communication to 1.1.1.1 on VLAN1, state 2WAY

OSPF: NBR(192.85.1.5) event TWOWAY

OSPF[1]: 2 Way Communication to 192.85.1.5 on VLAN1, state 2WAY

OSPF: INTF(192.85.1.0) event WAIT_TIMER

OSPF[1]: Interface 192.85.1.0 on VLAN1 Waittmr expired

OSPF: NBR(192.85.1.4) event ADJ_OK

OSPF[1]: NBR 1.1.1.1 on VLAN1 Adjacency OK, state EXSTART.

OSPF: NBR(192.85.1.5) event ADJ_OK

OSPF[1]: NBR 192.85.1.5 on VLAN1 Adjacency OK, state EXSTART.

OSPF[1]: NBR 192.85.1.4 Negotiation Done. We are the MASTER. seq 0x3a1

OSPF: NBR(192.85.1.4) event NEGO_DONE

OSPF[1]: NBR 1.1.1.1 on VLAN1 Negotiation Done. We are the MASTER

OSPF: NBR(192.85.1.4) event EXCH_DONE

OSPF[1]: Exchange Done with 1.1.1.1 on VLAN1

OSPF: NBR(192.85.1.4) event LOAD_DONE

OSPF[1]: Loading Done with 1.1.1.1 on VLAN1, database Synchronized (FULL)

OSPF[1]: Loading Done with Nbr 1.1.1.1 on VLAN1, database Synchronized (FULL)

OSPF[1]: NBR 192.85.1.5 Negotiation Done. We are the SLAVE. seq 0x25efb

OSPF: NBR(192.85.1.5) event NEGO_DONE

OSPF[1]: NBR 192.85.1.5 on VLAN1 Negotiation Done. We are the SLAVE

OSPF: NBR(192.85.1.5) event EXCH_DONE

OSPF[1]: Exchange Done with 192.85.1.5 on VLAN1

OSPF: NBR(192.85.1.5) event LOAD_DONE

OSPF[1]: Loading Done with 192.85.1.5 on VLAN1, database Synchronized (FULL)

OSPF[1]: Loading Done with Nbr 192.85.1.5 on VLAN1, database Synchronized (FULL)

.....

33.5.1.14 debug ip ospf flood

Syntax

To display OSPF-related database pervasion process, use the debug ip ospf flood command. **debug ip ospf flood**

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

To display OSPF-related database pervasion process from the output of this command.

Example

Switch # debug ip ospf flood

OSPF[1]: recv UPDATE, type 1 LSID 192.85.1.5 ADV_RTR 192.85.1.5 AGE 15 SEQ 0x80000004 in area 0

OSPF[1]: not_my_lsa new DB(192.85.1.5) type 1 AGE 15 SEQ 0x80000004 CHKS 0x2d94

OSPF[1]: recv UPDATE, type 1 LSID 1.1.1.1 ADV_RTR 1.1.1.1 AGE 15 SEQ 0x80000003 in area 0

OSPF[1]: not_my_lsa new DB(1.1.1.1) type 1 AGE 15 SEQ 0x80000003 CHKS 0x7281

KYLAND

OSPF[1]: recv UPDATE, type 2 LSID 192.85.1.5 ADV_RTR 192.85.1.5 AGE 20 SEQ 0x80000001 in area 0 OSPF[1]: not_my_lsa new DB(192.85.1.5) type 2 AGE 20 SEQ 0x80000001 CHKS 0x7d66 OSPF[1]: Loading Done with Nbr 1.1.1.1 on VLAN1, database Synchronized (FULL) OSPF[1]: Loading Done with Nbr 192.85.1.5 on VLAN1, database Synchronized (FULL) OSPF[1]: recv UPDATE, type 1 LSID 192.85.1.1 ADV_RTR 192.85.1.1 AGE 8 SEQ 0x80000002 in area 0 OSPF[1]: when add DB(192.85.1.1) type 1, we fount it OSPF[1]: recv self originate DB(192.85.1.1) type 1, same instance OSPF[1]: recv UPDATE, type 2 LSID 192.85.1.5 ADV_RTR 192.85.1.5 AGE 1 SEQ 0x80000002 in area 0 OSPF[1]: when add DB(192.85.1.5) type 2, we fount it OSPF[1]: not_my_lsa MORE_RECENT DB(192.85.1.5) type 2 AGE 20 SEQ 0x80000001 CHKS 0x7d66 OSPF[1]: Send UPDATE, type 1 LSID 192.85.1.1 ADV_RTR 192.85.1.1 AGE 1 SEQ 0x80000003 in the area 0 OSPF[1]: recv UPDATE, type 1 LSID 192.85.1.1 ADV_RTR 192.85.1.1 AGE 2 SEQ 0x80000003 in area 0 OSPF[1]: when add DB(192.85.1.1) type 1, we fount it OSPF[1]: recv self originate DB(192.85.1.1) type 1, same instance OSPF[1]: recv UPDATE, type 2 LSID 192.85.1.5 ADV_RTR 192.85.1.5 AGE 1 SEQ 0x80000003 in area 0 OSPF[1]: when add DB(192.85.1.5) type 2, we fount it OSPF[1]: not_my_lsa MORE_RECENT DB(192.85.1.5) type 2 AGE 1 SEQ 0x80000002 CHKS 0xf6cf

.....

33.5.1.15 debug ip ospf lsa-generation

Syntax

To display OSPF-related LSA generation process, use the debug ip ospf Isa generation command. **debug ip ospf Isa-generation**

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

To display OSPF interface and adjacency events from the output of this command.

Example

router# debug ip ospf lsa-generation

.....

OSPF[1]: addLSA, type:1, ls_id:192.85.1.1, adv_rtr:192.85.1.1, in area 0

OSPF[1]: add new LSA, type:1, ls_id:192.85.1.1, adv_rtr:192.85.1.1, in area 0

OSPF[1]: Build RTR_LSA for area 0, rID 192.85.1.1, seq0x80000001

OSPF[1]: addLSA, type:1, ls_id:192.85.1.1, adv_rtr:192.85.1.1, in area 0

OSPF[1]: find the same LSA, type:1, ls_id:192.85.1.1, adv_rtr:192.85.1.1, in area 0

OSPF[1]: Build RTR_LSA for area 0, rID 192.85.1.1, seq0x8000002

OSPF[1]: addLSA, type:1, ls_id:192.85.1.5, adv_rtr:192.85.1.5, in area 0

OSPF[1]: add new LSA, type:1, ls_id:192.85.1.5, adv_rtr:192.85.1.5, in area 0

OSPF[1]: addLSA, type:1, ls_id:1.1.1.1, adv_rtr:1.1.1.1, in area 0

 $\mathsf{OSPF[1]: add \ new \ LSA, \ type:1, \ ls_id:1.1.1.1, \ adv_rtr:1.1.1.1, \ in \ area \ 0}$

OSPF[1]: addLSA, type:2, ls_id:192.85.1.5, adv_rtr:192.85.1.5, in area 0

OSPF[1]: add new LSA, type:2, ls_id:192.85.1.5, adv_rtr:192.85.1.5, in area 0

OSPF[1]: Loading Done with Nbr 1.1.1.1 on VLAN1, database Synchronized (FULL)

OSPF[1]: addLSA, type:1, ls_id:1.1.1.1, adv_rtr:1.1.1.1, in area 0

OSPF[1]: find the same LSA, type:1, ls_id:1.1.1.1, adv_rtr:1.1.1.1, in area 0

.....

33.5.1.16 debug ip ospf packet

Syntax

To display OSPF packets, use the debug ip ospf packet command. **debug ip ospf packet** [ack | dd | hello | update | request]

Parameter

Parameter	Description
ack	Monitors OSPF ACK packets.

dd	Monitors OSPF DD packets.
hello	Monitors OSPF Hello packets.
update	Monitors OSPF Update packets.
request	Monitors OSPF Request packets.

Default value

none

Command mode

EXEC

Usage guidelines

To display OSPF interface and adjacency events from the output of this command.

Example

Switch# debug ip ospf packet

OSPF: Recv a packet from source: 192.85.1.4 dest 224.0.0.5

OSPF[1]: Recv HELLO from 1.1.1.1(addr: 192.85.1.4) area 0 from VLAN1

OSPF[1]: End of hello processing

OSPF: Recv IP_SOCKET_RECV_PACKET message, length=72

OSPF: Recv a packet from source: 192.85.1.5 dest 224.0.0.5

OSPF[1]: Recv HELLO from 192.85.1.5(addr: 192.85.1.5) area 0 from VLAN1

OSPF[1]: End of hello processing

OSPF[1]: Send HELLO to 224.0.0.5 on VLAN1. HelloInt 10 Dead 40 Opt 0x2 Pri 1 len 52

OSPF: Recv IP_SOCKET_RECV_PACKET message, length=72

OSPF: Recv a packet from source: 192.85.1.4 dest 224.0.0.5

OSPF[1]: Recv HELLO from 1.1.1.1(addr: 192.85.1.4) area 0 from VLAN1

OSPF[1]: End of hello processing

.....

OSPF: Recv a packet from source: 192.85.1.5 dest 224.0.0.5

OSPF[1]: recv UPDATE packet from 192.85.1.5 (addr: 192.85.1.5) area 0 from VLAN1 len 64 advcnt 1

OSPF[1]: recv UPDATE, type 1 LSID 192.85.1.1 ADV_RTR 192.85.1.1 AGE 7 SEQ 0x80000002 in area 0

OSPF[1]: Send ACK, type 1, LSID 192.85.1.1, ADV_RTR 192.85.1.1, AGE 5, SEQ 0x80000002

OSPF[1]: Send ACK to 192.85.1.5(RID 192.85.1.5) len 44 on VLAN1

.....

33.5.1.17 debug ip ospf restart

Syntax

To moniter the smooth restart process of OSPF, run the following command. **debug ip ospf restart**

Parameter

None

Default value

None

Command mode

Exec

Usage guidelines

The command is used to output information and show the smooth restart process of OSPF.

Example

GR Restarter end:

Switch# debug ip ospf restart

OSPF: Recv MSG_OSPF_GRACEFUL_RESTART message

OSPF: Build grace-LSA, adv_rtr:5.5.5.5, in area 0, at interface VLink 0.0.0.0

OSPF: Build grace-LSA, adv_rtr:5.5.5.5, in area 1, at interface VLAN1

OSPF: grace-LSAs have been flooded out. switch redundant

OSPF: The OSPF process 1 is restarting gracefully now.

OSPF: Recv MSG_OSPF_RESTART message

OSPF: OSPF process 1 is restarting

OSPF: Database resynchronized with 12.12.12.12 on VLAN1 done, to FULL

OSPF: OSPF process 1 has reestablished all its adjacencies. GR successfully

OSPF: Recv MSG OSPF GR TERMINATE message

OSPF: GR of OSPF process 1 terminated

GR Helper end:

router# debug ip ospf restart

OSPF: IETF GR Received grace-LSA from 5.5.5.5(addr: 192.167.1.1) on VLink 192.167.1.1

OSPF: IETF GR Validate grace-LSA from nbr 5.5.5.5 on VLink 192.167.1.1

OSPF: IETF GR Process grace-LSA from nbr 5.5.5.5 on VLink 192.167.1.1, age 1, grace period 200, graceful restart reason: Switch to redundant control processor, graceful ip address: 0.0.0.0

OSPF: IETF GR Enter graceful restart helper mode for nbr 5.5.5.5 on VLink 192.167.1.1 for 199 seconds (requested 200 sec)

OSPF: IETF GR Received grace-LSA from 5.5.5.5(addr: 192.167.1.1) on FastEthernet0/0

OSPF: IETF GR Validate grace-LSA from nbr 5.5.5.5 on FastEthernetO/O

- OSPF: IETF GR Process grace-LSA from nbr 5.5.5.5 on FastEthernet0/0, age 1, grace period 200, graceful restart reason: Switch to redundant control processor, graceful ip address: 192.167.1.1
- OSPF: IETF GR Enter graceful restart helper mode for nbr 5.5.5.5 on FastEthernet0/0 for 199 seconds (requested 200 sec)
- OSPF: IETF GR Resynchronize with nbr 5.5.5.5(addr: 192.167.1.1)
- OSPF: IETF GR Received grace-LSA from 5.5.5.5(addr: 192.167.1.1) on FastEthernet0/0

OSPF: IETF GR Validate grace-LSA from nbr 5.5.5.5 on FastEthernetO/O

OSPF: IETF GR Process grace-LSA from nbr 5.5.5.5 on FastEthernet0/0, age 3600, grace period 200, graceful restart reason: Switch to redundant control processor, graceful ip address: 192.167.1.1

OSPF: Recv MSG_OSPF_GR_HELP_RT_TERMINATE message

OSPF: IETF GR Exiting graceful restart helper mode for nbr 5.5.5.5(addr: 192.167.1.1) on VLink 192.167.1.1 with 21 secs remaining

OSPF: scheduling rtr 1sa for area 0 process 1

OSPF: IETF GR Exiting graceful restart helper mode for nbr 5.5.5.5(addr: 192.167.1.1) on FastEthernet0/0 with 21 secs remaining

OSPF: scheduling rtr lsa for area 1 process 1

OSPF: scheduling net Isa on intf FastEthernet0/0

33.5.1.18 debug ip ospf retransmission

Syntax

To display retransmission of OSPF paceket, uset the debug ip ospf retransmission command; **debug ip ospf retransmission**

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

To display transmission processo OSPF packets.

Example

Switch# debug ip ospf retransmission

OSPF: retransmit UPDATE to 192.168.40.3 (RID 192.168.40.3), state FULL

.....

33.5.1.19 debug ip ospf spf

Syntax

To display information of SPF algorithm, use the following commands. debug ip ospf spf debug ip ospf spf intra debug ip ospf spf inter debug ip ospf spf external

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

The debug ip ospf spf statistic command displays the OSPF routes calculation process.

Example

Switch # debug ip ospf spf

OSPF[1]: too soon to run SPF, or SPF already scheduled. OSPF[1]: run ospf_spf_run for area 0 OSPF[1]: start doing SPF for AREA 0, RTAB_REV(ospf) 2. OSPF: Initializing to do SPF OSPF[1]: SPF Area 0 running Router LSA OSPF[1]: ospf_nh_find: 192.85.1.1 OSPF[1]: Area(0) add LSA(192.85.1.5, LS_NET) 1 under LSA(192.85.1.1, LS_RTR) OSPF: ospf_rtr_netbacklink is called OSPF[1]: ospf_nh_add 192.85.1.5 OSPF[1]: Area(0) add LSA(192.85.1.5, LS_RTR) 1 under LSA(192.85.1.5, LS_NET) OSPF: ospf_rtr_netbacklink is called OSPF[1]: Area(0) add LSA(192.85.1.5, LS_RTR) 1 under LSA(192.85.1.5, LS_NET) OSPF: ospf_rtr_netbacklink is called OSPF[1]: ospf_nh_add 192.85.1.4

OSPF[1]: ospf_update_local_table, DEST 192.85.1.0, MASK 255.255.255.0, OSPF_REV 2, calc in area 0, AREA_REV 2

OSPF[1]: info REV 1, LS_TYPE 0, redorded in area 0, AREA_REV 2, state 12

OSPF[1]: info REV 2, LS_TYPE 2, redorded in area 0, AREA_REV 2, state 1

OSPF[1]: end doing SPF for AREA 0

OSPF[1]: finish ospf_spf_run for area 0 with err_code 0

OSPF[1]: ospf_add_main_table

OSPF[1]: delete route 192.85.1.0 first (255.255.255.0).

OSPF[1]: ospf_create_main_table_route equi_lsdb_num=1 maximum_paths=8

OSPF[1]: ospf_create_main_table_route RT 192.85.1.0 LS_TYPE 2 nh 192.85.1.1 area 0.0.0.0

OSPF[1]: build route 192.85.1.0/24 nh num=1, state=0x00031000.

Description of the displaying fields:

Field	Description
LSA(192.85.1.5,	ID and turns of LCA
LS_NET)	ID and type of LSA

33.5.1.20 debug ip ospf tree

Syntax

To display establishment of SPF tree of OSPF, use the debug ip ospf tree. **debug ip ospf tree**

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

To display establishment of SPF tree of OSPF from the output of this command.

Example

Switch # debug ip ospf tree

OSPF[1]: Area(0) add LSA(192.85.1.1, LS_NET) 1 under LSA(192.85.1.1, LS_RTR)

OSPF[1]: Area(0) add LSA(1.1.1.1, LS_RTR) 1 under LSA(192.85.1.1, LS_NET)

OSPF[1]: Area(0) add LSA(192.85.1.5, LS_RTR) 1 under LSA(192.85.1.1, LS_NET)

OSPF[1]: Area(0) add LSA(1.0.4.1, LS_SUM_NET) 2 under LSA(1.1.1.1, LS_RTR)

OSPF[1]: Area(0) add LSA(56.0.0.1, LS_SUM_NET) 2 under LSA(1.1.1.1, LS_RTR)

OSPF[1]: Area(0) add LSA(11.1.1.1, LS_SUM_NET) 2 under LSA(1.1.1.1, LS_RTR)

OSPF[1]: call ospf_update_local_table_BFS

Description of the displaying fields:

Field	Description
LSA(1.0.4.1, LS_SUM_NET)	ID and type of LSA
add	Sub-LSA
under	parent LSA

33.5.1.21 default-information originate

Syntax

To generate a default route into an Open Shortest Path Firstly (OSPF) routing domain, use the **default-information** originate command

default-information originate [always | metric-type [1 | 2] | metric cost | route-map map-name] no default-information originate

Parameter

parameter	description
originate	Generate a default external route into an Open Shortest Path Firstly (OSPF) routing domain
Always	(Optional) Always advertises the default route regardless of whether the software has a default route.
metric-type [1 2]	(Optional) Metric value type. The value ranges from 1 to 2. The default value is 2.
metric cost	(Optional) The routing cost value ranges from 0 to 16777214, and the default value is 100.
route-map	(Optional) Routing process will generate the default route if the route map is
map-name	satisfied.

Default value

This command is disabled by default.

Command mode

router configuration

Usage guidelines

Whenever you use the redistribute or the default-information router configuration command to redistribute routes into an OSPF routing domain, the software automatically becomes an Autonomous System Boundary Router Switch. However, an ASBR Switch does not, by default, generate a default route into the OSPF routing domain. The software still must have a default route for itself before it generates one, except when you have specified the always keyword.

When you use this command for the OSPF process, you must satisfy the route-map argument. Use the **default-information originate always route-map** command when you do not want the dependency on the default network in the routing table.

KYLAND

Example

The following example specifies a metric of 100 for the default route redistributed into the OSPF routing domain and an external metric type of Type 1:

ļ

router ospf 109

default-information originate metric-type 1

redistribute rip 1

ļ

Related commands

Redistribute

33.5.1.22 default-metric

Syntax

To set default metric values for the Open Shortest Path Firstly (OSPF) routing protocol, use the default-metric command. To return to the default state, use the no form of this command. **default-metric** *value*

uerault-metric vulue

no default-metric

Parameter

parameter	description
value	Default metric value appropriate for the specified routing protocol, in the range
	1~16777214.

Default value

Default metric value is 10.

Command mode

OSPF Routing configuration mode

Usage guidelines

The default-metric command is used in conjunction with the redistribute router configuration command to cause the current routing protocol to use the same metric value for all redistributed routes. A default metric helps solve the problem of redistributing routes with incompatible metrics. Whenever metrics do not convert, using a default metric provides a reasonable substitute and enables the redistribution to proceed.

Example

The example assigns 3 as the default metric routes. Switch_config_ospf_100#default-metric 3

Related commands

redistribute

33.5.1.23 distance

Syntax

To set the management distance based on the router-id of inform route and of ospf route set by the destination segment, run the following command. To return to the default setting, use the no form of this command. **distance** *value* [*network mask*] [access-list-name] **no distance** *value* [*network mask*]

Parameter

Parameter	Description
value	(Optional) management distance. The value ranges from 1 to 255.
network	(Optional) The segment which router-id of the inform router locates
mask	(Optional) The segment mask which router-id of the inform router locates
access-list-name	(Optional) Name of the access list

Default value

intra-area: 110 inter-area: 110 external: 150

Command mode

OSPF Routing configuration mode

Usage guidelines

At least there is a parameter.

The command works the same with command "distance ospf". While this command can set a finer management distance according to router-id of the inform router and destination segment.

KYLAND

Example

The following example shows how to set the management distance of the route complying with the list 1 which sent by router 1.1.1.1. as 100:

ļ

router ospf 1

```
distance 100 1.1.1.1 255.255.255.255 1
```

redistribute ospf 2

!

Related command

distance ospf

33.5.1.24 distance ospf

Syntax

To define Open Shortest Path Firstly (OSPF) route administrative distances based on route type, use the distance ospf command To restore the default value, use the no form of this command.

distance ospf {[intra-area dist1] [inter-area dist2] [external dist3]}

no distance ospf [intra-area] [inter-area] [external]

Parameter

parameter	description
intra-area dist1	(Optional) Sets the distance for routes in an area, learned by redistribution. The default value is 110.
inter-area dist2	(Optional) Sets the distance for all routes from one area to another area. The default value is 110.
external dist3	(Optional) Sets the distance for routes from other routing domains, learned by redistribution. The default value is 150.

Default value

intra-area: 110 inter-area: 110 external: 150

Command mode

OSPF Routing configuration mode

Usage guidelines

There is at least one parameter.

This command performs the same function as the distance command used with an access list. However, the distance ospf command allows you to set a distance for an entire group of routes, rather than a specific route that passes an access list.

Example

The following example changes the external distance to 200:

```
Switch A:
```

```
ļ
```

```
router ospf 1
```

distance ospf external 200

redistribute ospf 2

```
ļ
```

router ospf 2

distance ospf external 200

redistribute ospf 1

```
ļ
```

Switch B:

ļ

router ospf 1

distance ospf external 200

redistribute ospf 2

ļ

router ospf 2

distance ospf external 200

redistribute ospf 1

ļ

Related commands

distance

33.5.1.25 filter

Syntax

To configure routing fliter list, use the **filter** command. Use the no filter command to restore the default. **filter** {**interface-type** *interface*-number | *} **in** {**access-list** *access-list-name* | **gateway** *access-list-name* | **prefix-list**

prefix-list-name}

no filter {interface-type interface-number | *} in

Parameter

parameter	description
interface-type	Interface type
interface-number	Interface number
*	All interfaces
In	Filters incoming ospf routes
access-list-name	Name of access list
access-list-name	Name of access list
prefix-list-name	Name of prefix list

Default value

none

Command mode

OSPF Routing configuration mode

Usage guidelines

none

Example

Switch_config_ospf_1#filter * in access-list mylist

33.5.1.26 graceful-restart

Syntax

To set OSPF graceful restart and related parameters, run the following command. To return to the default setting, use the no form of this command.

graceful-restart { ietf [helper {disable | strict-lsa-checking }] | interval period }
no graceful-restart { ietf [helper {disable | strict-lsa-checking }] | interval }

Parameter

Parameter	Description
ietf	Enables graceful restart of IETF standard (based on rfc 3623). The command is disabled by default.
interval <i>period</i>	Configures the time limit of graceful restart. The value ranges from 40~1800s. The default value is 120s.
helper disable	(Optional) Disable GR helper. By default, the device can be GR helper of any OSPF neighbor.
helper strict-lsa-checking	(Optional) Enable strict-Isa-checking. When GR Helper detects the change of LSA, exit from Help mode. The command is disabled by default.

Default value

None

Command mode.

OSPF Routing configuration mode

Usage guidelines

None

Example

!

router ospf 1

router-id 192.85.1.1

network 192.85.1.0 255.255.255.0 area 0

graceful-restart ietf

graceful-restart interval 90

33.5.1.27 ip ospf authentication

Syntax

To designate the authentication mode of an interface receiving and sending ospf packets, run the following command. To return to the default setting, use the no form of this command.

ip ospf authentication { simple | message-digest }
no ip ospf authentication

Parameter

Parameter	Description
simple	Authentication information verified by the plaintext
message-digest	Authentication information verified by MD5

Default value

No authentication

Command mode

Interface configuration mode

Usage guidelines

If use the command "**ip ospf authentication simple**" to verify the interface with the plaintext, you must configure a plaintext password with the command "**ip ospf password**". If use the command "**ip ospf authentication message-digest**" to designate the specified interface with md5 encryption authentication, you must configure md5 key with the command "**ip ospf message-digest-key**". If in one network, all OSPF are guaranteed with OSPF mutual communication, they must share the same verification type and passwords.

Considering the compatibility, the authentication type of one ospf domain must be kept. If no ospf authentication type is configured on the interface, the authentication type of the domain which the interface belongs to will be used (The default authentication type is no authentication.)

Example

The following example shows how to verify interface VLAN 2 with md5 verification.

ļ

interface VLAN2

KYLAND

ip address 131.119.251.201 255.255.255.0

no ip directed-broadcast

ip ospf authentication message-digest

ip ospf message-digest-key 1 md5 0 abcdefg

ļ

router ospf 1

network 131.119.0.0 255.255.0.0 area 0

!

Related command

ip ospf password ip ospf message-digest-key area authentication

33.5.1.28 ip ospf bfd

Syntax

To enable BFD fast check function in the routing configuration mode, run the following command. **ip ospf bfd** To return to the default setting, use the no form of this command. **ip ospf bfd [disable]** To disable interface bfd, run the following command. **no ip ospf bfd**

Parameter

disable: disable the function of bfd on the interface

Default value

No bfd

Command mode

Interface configuration mode

Usage guidelines

This function enables ospf and bfd collaborating to detect change of the fast detection link status.

Example

The following example shows how to enable bfd collaboration on the interface vlan2:

ļ

interface VLAN2

ip address 172.16.0.1 255.255.0.0

no ip directed-broadcast

ip ospf bfd

ļ

router ospf 110

network 172.16.0.0 255.255.0.0 area 1

ļ

Related command

bfd all-interfaces

33.5.1.29 ip ospf cost

Syntax

To specify the cost of OSPF protocol on an interface, use the ip ospf cost command in interface configuration mode. To restore to the default value, use the no form of this command.

ip ospf cost cost

no ip ospf cost

Parameter

parameter	description
cost	the cost of OSPF protocol. It can be a value in the range from 1 to 65535.

Default value

Default value of the OSPF protocol cost depends on rate of the interface.

Command mode

interface configuration mode

Example

The following example sets the interface cost value to 2:

Switch_config_v2#ip ospf cost 2

specify the the interface cost of OSPF protocol, to restore the default value, use the no ip ospf command.

33.5.1.30 ip ospf dead-interval

Syntax

To set the dead-interval of specified routing switch in neighbourhood, use the ip ospf dead-interval command in interface configuration mode. To restore the default value, use the no form of this command.

ip ospf dead-interval seconds

no ip ospf dead-interval

Parameter

parameter	description
Seconds	Interval (in seconds) of specified routing switch in neighbourhood. The range is 1
	to 2147483647.

Default value

40 seconds

Command mode

interface configuration

Usage guidelines

The dead interval is advertised in OSPF hello packets and sent with OSPF hello packets. This value must be the same for all networking devices on a specific network and four times the interval set by the ip ospf hello-interval command.

Example

The following example sets the OSPF dead interval to 60 seconds:

Switch_config_v2#ip ospf dead-interval 60

Related commands

ip ospf hello-interval

33.5.1.31 ip ospf demand-circuit

Syntax

To designate the interface as the demand circuit, run the following command. To return to the default setting, use the no form of this command.

ip ospf demand-circuit no ip ospf demand-circuit

Parameter

None

Default value

Disabled

Command mode

Interface configuration mode

Usage guidelines

After configuring the on-demand circuit, hello packets and periodically link status update packets can be suppressed. The bottom link can be disabled after the network topology is stable.

Example

The following example shows how to configure interface VLAN2 as on-demand circuit. Switch_config_v2#ip ospf demand-circuit

33.5.1.32 ip ospf hello-interval

Syntax

To specify the interval between hello packets that the Cisco IOS software sends on the interface, use the ip ospf hello-interval command. To return to the default value, use the no form of this command. **ip ospf hello-interval** *seconds* **no ip ospf hello-interval**

Parameter

description

Seconds	Specifies the interval (in seconds) of sending hello packets. The range is from 1 to	
	65535.	

Default value

10 seconds

Command mode

interface configuration mode

Usage guidelines

This value is advertised in the hello packets and sent with the hello packets. The smaller the hello interval, the faster topological changes will be detected, but more routing traffic will ensue. This value must be the same for all routers and access servers on a specific network.

Example

The following example sets the interval between hello packets to 20 seconds:

Switch_config_v2#ip ospf hello-interval 20

Related commands

ip ospf dead-interval

33.5.1.33 ip ospf message-digest-key

Syntax

To enable Open Shortest Path Firstly (OSPF) Message Digest 5 (MD5) authentication, use the ip ospf message-digest-key md5 command. To remove an old MD5 key, use the no form of this command. **ip ospf message-digest-key** *keyid* **md5** [0 | 7] *key*

no ip ospf message-digest-key [keyid]

Parameter

parameter	description
keyid	An identifier in the range from 1 to 255.
key	Alphanumeric password of up to 16 bytes.
0 7	Designate the key type: plaintext (0) or ciphertext (7)

Default value

OSPF MD5 authentication is disabled.

Command mode

interface configuration mode

Usage guidelines

Usually, one key per interface is used to generate authentication information when sending packets and to authenticate incoming packets. The same key identifier on the neighbor router must have the same key value. The process of changing keys is as follows. Suppose the current configuration is as follows:

interface VLAN2 no ip address no ip directed-broadcast ip ospf message-digest-key 100 md5 0 OLD You change the configuration to the following: interface VLAN2 no ip address no ip directed-broadcast ip ospf message-digest-key 100 md5 0 OLD ip ospf message-digest-key 101 md5 NEW

ļ

ļ

!

l

The system assumes its neighbors do not have the new key yet, so it begins a rollover process. It sends multiple copies of the same packet, each authenticated by different keys. In this example, the system sends out two copies of the same packet - he first one authenticated by key 100 and the second one authenticated by key 101. Rollover allows neighboring routers to continue communication while the network administrator is updating them with the new key. Rollover stops once the local system finds that all its neighbors know the new key. The system detects that a neighbor has the new key when it receives packets from the neighbor authenticated by the new key. After all neighbors have been updated with the new key, the old key should be removed. In this example, you would enter the following:

interface VLAN2

no ip ospf message-digest-key 100

Then, only key 101 is used for authentication on Ethernet VLAN2.

We recommend that you not keep more than one key per interface. Every time you add a new key, you should

KYLAND

remove the old key to prevent the local system from continuing to communicate with a hostile system that knows the old key. Removing the old key also reduces overhead during rollover.

Example

The following example sets a new key 19 with the password 8ry4222:

```
ļ
```

```
interface VLAN2
```

ip ospf message-digest-key 10 md5 0 xvv560qle

ip ospf message-digest-key 19 md5 0 8ry4222

!

Related commands

area authentication

33.5.1.34 ip ospf mib-binding

Syntax

To set OSPF progress of mib, run the following command. To return to the default setting, use the no form of this command.

ip ospf mib-binding *process-id* no ip ospf mib-binding

Parameter

Parameter	Description
process-id	OSPF process ID. The value ranges from 1 to 65535.

Default value

MIB operation binds on OSPF with the most small progress.

Command mode

Global configuration mode.

Usage guidelines

When multiple OSPF progresses are configured, the command can be used to bind MIB with a specific OSPF progress.

Example

The following example shows how to bind MIB operation to OSPF 100: Switch_config#ip ospf mib-binding 100

33.5.1.35 ip ospf network

Syntax

To configure the Open Shortest Path Firstly (OSPF) network type, use the ip ospf network command. To return to the default value, use the no form of this command.

ip ospf network { broadcast | non-broadcast | point_to_multipoint [broadcast | non-broadcast]|
point-to-point}

no ip ospf network

Parameter

parameter	description
broadcast	Sets the network type to broadcast.
nonbroadcast	Sets the network type to nonbroadcast multiaccess
point-to-point	Sets the network type to point-to-point.
point-to-multipoint	Sets the network type to point-to-multipoint.

Command mode

interface configuration mode

Usage guidelines

Using this feature, you can configure broadcast networks as NBMA networks. Configuring NBMA networks as point-to-multipoint network if there is no assurance to direct connection between any two routing switches..

Example

The following example sets VLAN2 as a nonbroadcast network type:

Switch_config_v2#ip ospf network non-broadcast

33.5.1.36 ip ospf passive

Syntax

To cancel sending a HELLO packets on an interface, use the ip ospf passive command. Use the no form of this command to reactivate the sending of HELLO packet.

ip ospf passive

no ip ospf passive

Parameter

This command has no keywords or parameters.

Default value

Send HELLO packets on the interface.

Command mode

interface configruration mode

Usage guidelines

If you cancel sending a HELLO packet on an interface, a specified subnetwork wll keep on declaring to other interfaces, and the routing update from other routing switch to this interface can still be received and dealt with. This is usually applicable to the STUB network, for in this kind of network there is usually no other OSPF routing switches.

Example

The following example sends a HELLO packet to all interfaces(except for VLAN2) overridden by network 172.16.0.0:

ļ

interface VLAN2

ip address 172.16.0.1 255.255.0.0

no ip directed-broadcast

ip ospf passive

ļ

router ospf 110

network 172.16.0.0 255.255.0.0 area 1

!

Related commands

None

33.5.1.37 ip ospf password

Syntax

To configure password for a neighbor route, use the ip ospf password command. Use the no form of this command to cancel the configuration.

ip ospf password [0 | 7] *password*

no ip ospf password

Parameter

parameter	description
password	Any consecutive 8-digit character string
0 7	Designate the key type: plaintext (0) or ciphertext (7).

Default value

No password is predefined by default.

Command mode

Interface configuration mode

Usage guidelines

The password generated by this command directly inserts OSPF information packet. This command can configure one password for each network of each interface. All neighbor routers must have the same password to exchange OSPD routing information.

When the configured key is displayed, it will be displayed as plain text or cipher text according to the global command.

Example

ip ospf password yourpsw

Related commands

area authentication

33.5.1.38 ip ospf priority

Syntax

To set the router priority, use the ip ospf priority command. To return to the default value, use the no form of this command.

ip ospf priority priority no ip ospf priority

Parameter

parameter	description
priority	specifies the priority. The range is from 0 to 255.

Default value

Priority of 1

Command mode

interface configuration mode

Usage guidelines

When two routing switches attached to a network both attempt to become the designated routing switch, the one with the higher routing switch priority takes precedence. If there is a tie, the routing switch with the higher routing switch ID takes precedence. A routing switch with a routing switch priority set to zero is ineligible to become the designated routing switch or backup designated routing switch. routing switch priority is configured only for interfaces to multiaccess networks (in other words, not to point-to-point networks).

Example

The following example sets the routing switch priority value of VLAN2 to 8: Switch_config_v2#ip ospf priority 8

Related commands

neighbor

33.5.1.39 ip ospf retransmit-interval

Syntax

To specify the time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface, use the ip ospf retransmit-interval command. To return to the default value, use the no form of this

command.

ip ospf retransmit-interval seconds no ip ospf retransmit-interval

Parameter

parameter	description	
seconds	Time (in seconds) between retransmissions. The range is from 1 to 3600 seconds.	

Default value

The default is 5 seconds.

Command mode

interface configuration mode

Usage guidelines

When a routing switch sends an LSA to its neighbor, it keeps the LSA until it receives back the acknowledgment message. If the routing switch receives no acknowledgment, it will resend the LSA. The setting of the seconds argument should be greater than the expected round-trip delay between any two routing switches on the attached network.

Example

The following example sets the retransmit interval value to 8 seconds: Switch_config_v2#ip ospf retransmit-interval 8

33.5.1.40 ip ospf transmit-delay

Syntax

To set ip ospf transmit-delay time on the interface, run the following command. To return to the default setting, use the no form of this command.

ip ospf transmit-delay time

no ip ospf transmit-delay

Parameter

Parameter	Description
time	ip ospf transmit-delay time Unit:s, the value ranges from 1 to 3600.

Default value

1s

Command mode

Interface configuration mode

Example

The following example shows how to configure the transmit-delay time on interface VLAN2 as 3s. Switch_config_v2#ip ospf transmit-delay 3

33.5.1.41 ip ospf mtu-ignore

Syntax

To set the port to not check the mtu value in the message, use **ip ospf mtu-ignor** command. Use no form of the command to restore the default settings.

ip ospf mtu-ignore

no ip ospf mtu-ignore

Default

The default state of the interface is to check the mtu value in the packet.

Command mode

Interface configuration mode

Example

The following example shows how to configure not to check the mtu value on interface VLAN2.

Switch_config_v2#ip ospf mtu-ignore

33.5.1.42 limit max-ext-lsa

Syntax

To set max amount of AS external LSA, run the following command. To return to the default setting, use the no form of this command. **limit max-ext-lsa** *value*

no limit max-ext-lsa

Parameter

Parameter	Description
value	Max amount of AS external LSA. The value ranges from 0 to 1000000.

Default value

No limit to the max amount of AS external LSA.

Command mode

OSPF Routing configuration mode.

Usage guidelines

The command is used to set all routes in OSPF autonomous domain as the same value.

Example

To set max amount of AS external LSA in OSPF progress 100 to be 1000:

Switch_config#router ospf 100

Switch_config _ospf_100#limit max-ext-lsa 1000

33.5.1.43 limit retransmissions

Syntax

To set the max re-transmit times of ospf, run the following command. The re-transmit packets are DD, REQ and LSU. To return to the default setting, use the no form of this command.

limit retransmissions { timers | disable }

no limit retransmissions [dsiable]

Parameter

Parameter	Description
timers	Max re-transmit times (The default value is 25)
disable	Cancel the max re-transmit times (No limit to the re-transmit)

Default value

The default re-transmit times is 25.

Command mode

OSPF Routing configuration mode

Usage guidelines

None

Example

The following example shows how to modify the retransmit times to 10:

Switch_config_ospf_100#limit retransmissions 10

The following example shows how to restart the retransmit times without limit:

Switch_config_ospf_100#limit retransmissions disable

33.5.1.44 maximum-paths

Syntax

To set the max amount of next hop of the equivalent route, run the following command. To return to the default setting, use the no form of this command.

maximum-paths value

no maximum-paths

Parameter

Parameter	Description
value	The max amount of next hop of the equivalent route. The value ranges from 1 to
	8.

Default value

8

Command mode

OSPF Routing configuration mode

Usage guidelines

If the value is 1, the load distribution does not work.

Example

The following example shows how to set next hop of the equivalent route in OSPF progress 100 to be 3.

Switch_config#router ospf 100

Switch_config_ospf_100#maximum-paths 3

33.5.1.45 neighbor

Syntax

To configure Open Shortest Path Firstly (OSPF) routing switch interconnecting to nonbroadcast networks, use the neighbor command. To remove a configuration, use the no form of this command. **neighbor** *ip-address* [**priority** *number*] [**poll-interval** *seconds*] [**cost** *number*]

no neighbor *ip-address* [**priority** *number*] [**poll-interval** *seconds*] [*cost number*]

Parameter

parameter	description
ip-address	Interface IP address of the neighbor.
priority number	(Optional) A number that indicates the router priority value of the nonbroadcast neighbor associated with the IP address specified. The default is 0. This keyword does not apply to point-to-multipoint interfaces.
poll-interval seconds	(Optional) A number value that represents the poll interval time (in seconds). RFC 1247 recommends that this value be much larger than the hello interval. The default is 120 seconds (2 minutes). This keyword does not apply to point-to-multipoint interfaces.
cost number	(Optional) Assigns a cost to the neighbor, in the form of an integer from 1 to 65535. Neighbors with no specific cost configured will assume the cost of the interface, based on the ip ospf cost command. For point-to-multipoint interfaces, the cost keyword and the number argument are the only options that are applicable. This keyword does not apply to nonbroadcast multiaccess (NBMA) networks.

Default value

no default value

Command mode

OSPF routing configuration

Usage guidelines

In X.25 and Frame Relay networks you can configure OSPF to run as a broadcast network. Detailed information is as follow:

In X.25 and frame relay map

One nonbroadcast network neighbor must be configured in the routing switch. The neighbor address must be on the primary address of the interface.

If a neighboring router has become inactive, it may still be necessary to send hello packets to the dead neighbor. These hello packets will be sent at a reduced rate called Poll Interval.

When the routing switch first starts up, it sends only hello packets to those routing switches with nonzero priority, that is, routing switches that are eligible to become designated routeing switch (DRs) and backup designated routing switches (BDRs). After the DRs and BDRsare selected, DRs and BDRs will then start sending hello packets to all neighbors in order to form adjacencies.

Example

The following example declares a routing switch at address 131.108.3.4 on a nonbroadcast network, with a priority of 1 and a poll interval of 180 seconds:

```
ļ
```

```
router ospf 100
```

```
neighbor 131.108.3.4 priority 1 poll-interval 180
```

ļ

The following example illustrates a point-to-multipoint network with nonbroadcast:

ļ

interface VLAN2

ip address 10.0.1.1 255.255.255.0

no ip directed-broadcast

ip ospf network point-to-multipoint non-broadcast

```
i
```

```
ļ
```

router ospf 1

network 10.0.1.0 255.255.255.0 area 0

neighbor 10.0.1.3 cost 5

neighbor 10.0.1.4 cost 10

neighbor 10.0.1.5 cost 15

ļ

Related commands

ip ospf priority

33.5.1.46 network area

Syntax

To define several network segments in an area as a network range, use the network area command. To disable the feature, use the no form of this command.

network network mask area area_id

no network *network mask* **area** *area_id*

Parameter

parameter	description
network	Network Ip address, in dotted decimal format.
mask	Mask, in dotted decimal format.
area_id	ld of area.

Default value

This command is disabled by default.

Command mode

OSPF Routing configuration mode

Usage guidelines

Any individual interface can only be attached to a single area. If the address ranges specified for different areas overlap, the software will adopt the first area in the network command list and ignore the subsequent overlapping portions. Importing network range and specifying the range can reduce the switch state of routing information among areas

Example

The following example defines network range 10.0.0.0 255.0.0.0 and adds to area 2: Switch_config_ospf_2#network 10.0.0.0 255.0.0.0 area 2

33.5.1.47 redistribute

Syntax

To configure OSPF to redistribute routes of other routing protocols, use the redistribute command. Use the no form of this command to restore the default.

redistribute *protocol process-id* [metric-type [1 | 2] | metric *cost* | tag *tag* | route-map *WORD*] no redistribute *protocol process-id* [metric | tag | route-map]

Parameter

parameter	Description
protocol	Redistributes former protocols that learned, it should be one of the following: beigrp, bgp, connect, isis, ospf, rip, static.
process-id	(Optional) Autonomous system number. There is no parameter for connect, static.
metric-type [1 2]	(Optional) Metric value type. The value ranges from 1 to 2. The default value is 2.
metric cost	(Optional) The routing cost value, ranges from 0 to 16777214, and the default value is 100.
tag tog	(Optional) The routing tag in the external LSA, in the range of 0 to 4294967295. The default value is 0.
route-map WORD	(Optional) Configure the route conforming to the specified routing policy.

Default value

Enabled

Command mode

OSPF Routing configuration mode

Usage guidelines

External route refers to the route to the outside of the autonomous system. This command does not redistribute the default route.

Example

The following example redistributes static route, metric value is Type-1, a route tag is 1000, and a metric value is 10:

Switch_config_ospf_2#redistribute static metric-type 1 tag 1000 metric 10

33.5.1.48 restart ospf

Syntax

To restart the OSPF process, use the restart ospf command. If no process-id is specified, all OSPF processes are restarted.

restart ospf [process-id] [graceful]

Parameter

parameter	description
process-id	The number of OSPF process. Range is from 1 to 65535.
graceful	(Optional) Restart OSPF process gracefully without changing Router ID.

Default value

None

Command mode

EXEC

Usage guidelines

Use restart ospf [process-id] command to restart the OSPF process, you can get the following results:

(1) You can immediately clear all data structures of the OSPF process.

(2) This command will reselect the Router ID.

(3) The OSPF configuration before restarting will not be lost.

If you restart gracefully, you can achieve uninterrupted forwarding, and the Router ID before and after the restart remains unchanged.

Example

Restart all OSPF processes gracefully: restart ospf graceful

33.5.1.49 router-id

Syntax

To designate router-id in OSPF in progesss, run the following command. To return to the default setting, use the no

form of this command. router-id *ip-address* no router-id

Parameter

Parameter	Description
ip-address	Router ID of OSPF progress. Point spread decimalism

Default value

OSPF progress selects router-id on its own.

Command mode

OSPF Routing configuration mode

Usage guidelines

After configuring the new router-id, the OSPF progress will be restarted. The configured router-id is exclusive to the whole OSPF autonomous domain.

Example

The following example shows how to configure one OSPF progress and the designated router-id is 1.1.1.1:

ļ

router ospf 109

router-id 1.1.1.1

ļ

Related command

router ospf

33.5.1.50 router ospf

Syntax

To configure an Open Shortest Path Firstly (OSPF) routing process, use the router ospf command. To terminate an OSPF routing process, use the no form of this command. router ospf process-id [vrf WORD]

no router ospf *process-id* [**vrf** *WORD*]

Parameter

parameter	description
process-id	ospf process ID. The value ranges from 1 to 65535.
vrf WORD	(Optional) Configure the name of the VPN instance bound to the OSPF process.

Default value

No OSPF routing process is defined.

Command mode

Global configuration mode

Usage guidelines

You can specify multiple OSPF routing processes in each router.

On a router, you can run multiple ospf processes by specifying different process numbers. In this case, you can use the **router-id** command to specify different Router IDs for different processes.

If OSPF is used as a VPN internal routing protocol, you need to bind the OSPF process to the VPN instance.

Example

The following example configures an OSPF routing process and assign a process number of 109:

router ospf 109

Related commands

network area

33.5.1.51 show ip ospf

Syntax

To display general information about Open Shortest Path Firstly (OSPF), use the show ip ospf command. **show ip ospf** [*process-id*]

Parameter

parameter	description
process-id	(Optional) Process ID.

Default value

none

Command mode

EXEC

Usage guidelines

Troubleshoot OSPF problems according to the output of this command. To display only the global configuration information of the corresponding OSPF process if configured with the process-id parameter.

Example

The following display the configuration information of OSPF process :

Switch#show ip ospf OSPF process: 1, Router ID is 192.168.99.81 Distance: intra-area 110 inter-area 130 external 150 Source Distance Access-list 240.240.1.1/24 1 what SPF schedule delay 5 secs, Hold time between two SPFs 10 secs Number of areas is 3 AREA: 1 Number of interface in this area is 1(UP: 1) Area authentication type: None AREA: 36.0.0.1 This is a stub area. Number of interface in this area is O(UP: 0) Area authentication type: None AREA: 192.168.20.0 Number of interface in this area is O(UP: 0) Area authentication type: None Net Range list: 10.0.0/255.0.0.0 Not-Advertise 140.140.0.0/255.255.0.0 Advertise filter list on receiving UPDATE is Gateway: weewe

filter list on sending UPDATE is Prefix: trtwd

Summary-address list:

150.150.0.0/16 advertise

Switch#

Description of the displaying fields

field	description
OSPF process: 1	OSPF process ID
Router ID is 192.168.99.81	Routing switch ID
Distance: intra-area 110	The default administrative distance that the current routing switch adopts
inter-area 130 external 150	
Source Distance Access-list	Administrative distance based on concrete routing configuration
SPF schedule delay 5 secs,	Value of two timer related to OSPF
Hold time between two	
SPFs 10 secs	
Number of areas is 3	The number of the field that currently configured and the parameter
	configured in each field
filter list on receiving	The configured filter list on receiving routes
filter list on sending	The configured filter list on sending routes
Summary-address list	The configured routing summary address

33.5.1.52 show ip ospf border-routers

Syntax

To display the internal Open Shortest Path Firstly (OSPF) routing table entries to an Area Border Router (ABR) and Autonomous System Boundary Router (ASBR), use the show ip ospf border-routers command. show ip ospf border-routers

Parameter

none

Default value

none

Command mode

EXEC

Example

Switch #

Switch #show ip ospf border-routers

OSPF process: 1

Codes: i - Intra-area route, I - Inter-area route

Destination Adv-Rtr Cost Type Area

i 192.168.20.77 192.168.20.77 11 ABR 0

Switch

Field description:

field	description
Destination	Routing switch ID of the destination.
Adv-Rtr	Next hop toward the destination.
Cost	Cost of using this route.
Туре	The routing switch type of the destination; it is either an ABR or ASBR or both.
Area	The area ID of the area from which this route is learned.

33.5.1.53 show ip ospf database

Syntax

To display lists of information related to the Open Shortest Path Firstly (OSPF) database, use the show ip ospf database command.

show ip ospf database

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

Display lists of information related to the Open Shortest Path Firstly (OSPF) database in accordance with debugging information of the command, and it is helpful for users in troubleshooting

Example

Switch #show ip ospf database

OSPF process: 1

(Router ID 192.168.99.81)

AREA: 0

Router Link States

Link ID ADV Router Age Seq # Checksum Link count

192.168.20.77 192.168.20.77 77 0x8000008a 0x90ed 1

192.168.99.81 192.168.99.81 66 0x80000003 0xd978 1

Net Link States

Link ID ADV Router Age Seq # Checksum

192.168.20.77 192.168.20.77 80 0x80000001 0x9625

Summary Net Link States

Link ID ADV Router Age Seq # Checksum

192.168.99.0 192.168.99.81 87 0x80000003 0xd78c

AREA: 1

Router Link States

Link ID ADV Router Age Seq # Checksum Link count

192.168.99.81 192.168.99.81 70 0x80000002 0x0817 1

Summary Net Link States

Link ID ADV Router Age Seq # Checksum

192.168.20.0 192.168.99.81 66 0x80000006 0xd1c1

Switch #

Field description:

	field	Description
ARI	EA: 1	OSPF area.

Router Link	
States/Net Link	
States/Summary Net	LSA type
Link States	
Link ID	LSA ID.
ADV Router	Advertising routing switch's ID.
Age	Link state age.
Seq #	Link state sequence number
Checksum	Fletcher checksum of the complete contents of the link state advertisement.

33.5.1.54 show ip ospf interface

Syntax

To display Open Shortest Path Firstly (OSPF)-related interface information, use the show ip ospf interface command.

show ip ospf interface

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

To display configuration and operation situation of OSPF on an interface according to the debugging information of this command. Users can confirm whether the configuration is right or not and it is helpful in troubeshooting

Example

Switch #show ip ospf interface

VLAN1 is up, line protocol is up

Internet Address: 10.0.1.1/24

KYLAND

Interface index: 34, 0x4057ea8

Nettype: Point-to-MultiPoint with Non-Broadcast

OSPF process is 1, AREA: 0, Router ID: 192.168.30.81

Cost: 1, Priority 1, Transmit Delay is 1 sec

Hello interval is 30, Dead timer is 120, Retransmit is 5

OSPF INTF State is IPOINT_TO_MPOINT

Neighbor Count is 1, Adjacent neighbor count is 1

Adjacent with neighbor 1.0.4.1

Null authentication enabled

Switch

Displaying field description:

field	description
Internet Address:	Interface IP address
Nettype	Net type of OSPF interface
OSPF process is	OSPF process number
AREA	OSPF area.
Router ID	Routing switch ID
Cost	Cost of routing switch OSPF interface
Transmit Delay is	Transmit delay
Priority	Priority of routing switch interface
Hello interval	Number of seconds until next hello packet is sent out this interface.
Dead timer	Dead timer
Retransmit	Retransmit interval
OSPF INTF State is	OSPF nterface state

33.5.1.55 show ip ospf neighbor

Syntax

To display Open Shortest Path Firstly (OSPF)-neighbor information, use the show ip ospf neighbor command. **show ip ospf neighbor [detail]**

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

To display neighbor situation of OSPF from the output of this command to help user troubleshoot OSPF.

Example

Switch#show ip ospf neighbor

AREA: 0

Neighbor ID Pri State DeadTime Neighbor Addr Interface

1.0.4.1 0 FULL/- 100 10.0.1.3 VLAN1

Displaying field description:

field	description
OSPF process	OSPF process number
AREA	OSPF area
Neighbor	Neighbor routing switch ID.
Pri	Routing switch priority of the neighbor, neighbor state.
State	OSPF state.
DeadTime	Expected time before software will declare the neighbor dead.
Neighbor Addr	Neighbor ip address

Interface

Interface to which connects the neighbor

33.5.1.56 show ip ospf virtual-link

Syntax

To display information of Open Shortest Path Firstly (OSPF) virtual links, use the show ip ospf virtual-links command.

show ip ospf virtual-link

Parameter

none

Default value

none

Command mode

EXEC

Usage guidelines

The information displayed by the show ip ospf virtual-links command is useful in debugging OSPF routing operations. To display the detailed information of adjacency relation of the OSPF neighbour, use the show show ip ospf neighbour command

Example

Switch#show ip ospf vir

Virtual Link Neighbor ID 200.200.200.2 (UP)

Run as Demand-Circuit

TransArea: 1, Cost is 185

Hello interval is 10, Dead timer is 40 Retransmit is 5

INTF Adjacency state is IPOINT_TO_POINT

Description of the displaying fields:

field	description
neibhbor ID	The configured neighbor ID of the remote side
neighbour state	Adjacency relation of the OSPF neighbor

Demand-Circuit	Indicates working under DC mode
TransArea	The transit area through which the virtual link is formed.
cost	The cost of reaching the OSPF neighbor through the virtual link.
Hello Interval	The current Hello interval
DeadTime	Expected time before software will declare the neighbor dead.
Retrans	Retransmit interval
INTF Adjacency State	The state of virtual link.

Related commands

area vritual-link

show ip ospf neighbor

33.5.1.57 stub-router

Syntax

To set stub route, rrun the following command. To return to the default setting, use the no form of this command. **stub-router**

no stub-router

Parameter

None

Default value

Disabled

Command mode

OSPF Routing configuration mode

Usage guidelines

After the router is configured as Stub router, the router will not forward packets whose destination segment is not in the router. At the moment, in Router-LSA published by the router, the value of the link whose type is 1 (point to point link), 1(connecting to the transmission network) and 4 (virtual link) will be set as 65535, while the value of the link 3 (connecting to Stub network) will not be changed. Thus, when other routers are working, if there is a smaller router with less cost in the destination address, the data will not be forwarded by this Stub router.

Example

The following example shows how to configure Stub router as the local router:

router ospf 109

stub-router

33.5.1.58 summary-address

Syntax

To create aggregate addresses for Open Shortest Path Firstly (OSPF), use the summary-address command. To restore the default, use the no form of this command.

summary-address address mask [not-advertise | tag value]

no summary-address address mask

Parameter

parameter	description
address	Summary address designated for a range of addresses.
Mask	IP subnet mask used for the summary route.
not-advertise	(Optional) Suppress match routes that creat LSA
tag	(Optional) Set route tag
value	Route tag value, the range is from 0 to 4294967295, the default is 0.

Default value

none

Command mode

OSPF Routing configuration mode

Usage guidelines

Routes learned from other routing protocols can be summarized. The metric used to advertise the summary is the smallest metric of all the more specific routes. This command helps reduce the size of the routing table.

Using this command for OSPF causes an OSPF Autonomous System Boundary Routing switch (ASBRs) to advertise one external route as an aggregate for all redistributed routes that are covered by the address. For OSPF, this command summarizes only routes from other routing protocols that are being redistributed into OSPF. Use the area range command for route summarization.

Example

In the following example, the summary address 10.1.0.0 includes address 10.1.1.0, 10.1.2.0, 10.1.3.0, and so on. Only the address 10.1.0.0 is advertised in an external link-state advertisement.

summary-address 10.1.0.0 255.255.0.0

Related commands

area range ip ospf password ip ospf message-digest-key

33.5.1.59 timers delay-timer

Syntax

To specify the delay interval between OSPF receiving a topology structure variety and initializing a minimum route priority computation, use the **timers delay-timer** command. Use the no form of this command to resotre default value.

timers delay-timer spf-delay

no timers delay-timer

Parameter

parameter	description
	Delay between topology variety and computation commencement in seconds,
spf-delay	from 0 to 65535. Default value is 5 seconds. If the value is 0, that indicates there
	is no delay, namely, once there is a variety, the commencement of computation
	immediately starts.

Default value

spf-delay: 5 seconds

Command mode

OSPF Routing configuration mode

Usage guidelines

The less the configured time is, the quicker the response to network variety. But this will take up more processing time.

Example

timers delay-timer 10

33.5.1.60 timers hold-timer

Syntax

To configure the interval between two continuous SPF computation, use the timers hold command. Use the no form of this command to restore the default value.

timers hold-timer spf-holdtime

no timers hold-timer

Parameter

parameter	description
	The minimum value between two continuous computation, in the range from 0
spf-holdtime	to 65535. The default value is 10 seconds; 0 means that there is no time
	difference between two consecutive calculations.

Default value

spf-holdtime: 10 seconds

Command mode

OSPF Routing configuration mode

Usage guidelines

The less the configured time is, the quicker the response to network variety. But this will take up more processing time.

Example

timers hold-timer 20

33.5.1.61 timers age-timer

Syntax

To set time interval of OSPF checking LSA database aging, run the following command. To return to the default

setting, use the no form of this command.

timers age-timer agetime

no timers age-timer

Parameter

Parameter	Description
agetime	Check Isa database every agetime

Default value

agetime: 60s

Command mode

OSPF Routing configuration mode

Usage guidelines

The smaller the time, the faster the database responds, but with more processer time.

Example

timers age-timer 50

33.6 BGP Configuration Commands

33.6.1 BGP Configuration Commands include:

- 1. address-family ipv4
- 2. address-family ipv6
- 3. address-family vpnv4
- 4. aggregate-address
- 5. bgp always-compare-med
- 6. bgp asnotation dot
- 7. bgp bestpath med
- 8. bgp client-to-client reflection
- 9. bgp cluster-id
- 10. bgp confederation identifier
- 11. bgp confederation peers
- 12. bgp dampening

- 13. bgp default local-preference
- 14. bgp default route-target filter
- 15. bgp deterministic-med
- 16. bgp fast-external-fallover
- 17. bgp graceful-restart
- 18. bgp update-delay
- 19. bgp maxas-limit
- 20. bgp router-id
- 21. bgp update-delay
- 22. clear ip bgp
- 23. debug ip bgp
- 24. distance
- 25. filter
- 26. maximum-paths
- 27. neighbor activate
- 28. neighbor advertisement-interval
- 29. neighbor allowas-in
- 30. neighbor capability orf prefix-list
- 31. neighbor default-originate
- 32. neighbor description
- 33. neighbor distribute-list
- 34. neighbor ebgp-multihop
- 35. neighbor fall-over
- 36. neighbor filter-list
- 37. neighbor local-as
- 38. neighbor maximum-prefix
- 39. neighbor next-hop-self
- 40. neighbor password
- 41. neighbor peer-group
- 42. neighbor prefix-list
- 43. neighbor remote-as
- 44. neighbor remove-private-AS
- 45. neighbor route-map
- 46. neighbor route-reflector-client
- 47. neighbor route-refresh
- 48. neighbor send-community
- 49. neighbor send-label

- 50. neighbor shutdown
- 51. neighbor soft-reconfiguration
- 52. neighbor timers
- 53. neighbor ttl-security-hop
- 54. neighbor update-source
- 55. neighbor weight
- 56. network (BGP)
- 57. redistribute (BGP)
- 58. router bgp
- 59. show ip bgp
- 60. show ip bgp community
- 61. show ip bgp neighbors
- 62. show ip bgp paths
- 63. show ip bgp prefix-list
- 64. show ip bgp regexp
- 65. show ip bgp summary
- 66. synchronization
- 67. table-map
- 68. timers

33.6.1.1 address-family ipv4

Syntax

To eneter bgp ipv4 address family mode, run the following command. To return to the default setting, use the no form of this command.

address-family ipv4 {mdt | multicast | unicast | vrf} [name]

Parameter

Parameter	Description
mdt	Enters ipv4 mdt configuration mode. It is used for mvpn.
multicast	Enters ipv4 multicast configuration mode. It is used for multicast rpf query.
unicast	Enters ipv4 unicast configuration mode. It is used for ipv4 unicast.
	Configuration parameters of address-family ipv4 vrf, which means enter vpn
name	configuration mode.

Default value

None

Command mode

BGP configuration mode

Usage guidelines

Expand bgp configuration mode.

Example

The following example shows how to activate neighbor 1.1.1.1 ipv4 mdt route inform.

router bgp 1 bgp log-neighbor-changes neighbor 1.1.1.1 remote-as 1

address-family ipv4 mdt

neighbor 1.1.1.1 activate

exit-address-family

Related command

exit-address-family

33.6.1.2 address-family ipv6

Syntax

To enter bgp ipv6 address family configuration mode, run the following command. address-family ipv6 {multicast | unicast}

Parameter

Parameter	Description
multicast	Enters the configuration mode of ipv6 multicast.
unicast	Enters the configuration mode of ipv6 unicast.

Default value

None

Command mode

BGP configuration mode

Usage guidelines

Expand bgp configuration mode

Example

The following example shows how to activate neighbor 1.1.1.1 ipv6 routing inform:

router bgp 1 bgp log-neighbor-changes

neighbor 1.1.1.1 remote-as 1

address-family ipv6

neighbor 1.1.1.1 activate

exit-address-family

Related command

exit-address-family

33.6.1.3 address-family vpnv4

Syntax

To enter bgp vpnv4 address family configuration mode, run the following command. address-family vpnv4

Parameter

None

Default value

None

Command mode

BGP configuration mode

Usage guidelines

Expand bgp configuration mode: used for I3vpn configuration environment. The configuration mode is often used in condition of PE-PE interconnection.

Example

The following example shows how to activate neighbor 1.1.1.1 vpnv4 routing inform.

router bgp 1 bgp log-neighbor-changes neighbor 1.1.1.1 remote-as 1

address-family vpnv4

neighbor 1.1.1.1 activate

exit-address-family

Related command

exit-address-family

33.6.1.4 aggregate-address

Syntax

To create an aggregate entry in a Border Gateway Protocol (BGP) database, use the aggregate-address command in address family or routing switch configuration mode. To disable this function, use the no form of this command. aggregate-address A.B.C.D/n [as-set] [summary-only] [attribute-map map-name] no aggregate-address A.B.C.D/n

Parameter

parameter	description
A.B.C.D/n	Aggregate network
as-set	Including AS set path attribute (AS-SET) of aggregated routes.
summary-only	Filters all more-specific routes from updates.

attribute-map	Name of the route map used to set the attribute of the aggregate route.
map-name	Name of the route map

Default value

none

Command mode

BGPconfiguration mode

Usage guidelines

You can implement aggregate routing in BGP in three methods: first,dynamic implement routing by forwarding redistribute; second, static implement routing by network command; third, static implement routing by aggregate. The routing created in this way are local routing, which can be announced to other equivalent, but not implement local IP address table.

The generation of aggregation routes is to reduce the number of routes in the routing table and increase the efficiency of route indexes and the stability of routes. BGP aggregation routes are performed in the BGP routing table, and aggregation routes are considered as locally generated routes and will not be added to the routes table. But they can be seen in the BGP routing table. The aggregate-address command with the same prefix will override the original configuration.

Aggregation routes usually aggregate existing routes according to certain rules. The existence of this route depends on the status of the its source route. BGP aggregation routes rely on the routes with the same prefix and more precise routes in the BGP routing table. When there is at least one route with the same prefix or a more precise route in the BGP routing table, the aggregation route can be valid. When the aggregation route is valid, it can be displayed by **show ip bgp** command, with a *> mark. The aggregation route can suppress the source route, then it is marked with s.

Without the as-set option, the as-path attribute formation of the aggregation route follows the following rules:

All entries that appear in as-sequence should appear in the summarized as-path;

- All entries that appear in as-set must appear in at least one type of summarized as-path;
- The longest identical entry in as-sequence is used as the summarized as-sequence;

The remaining entries are as-set.

With the as-set option, the as-path attribute of all existing routes appears in the as-path of the aggregate route as as-set.

Using the **summary-only** option not only creates an aggregation route (for example, 193.*.*.*), but also suppresses more specific routes.

Use the **attribute-map** option to modify the attributes of the route when generating an aggregate route.

The maximum number of aggregate commands that can be configured is determined by the switch resources, such as the configured RAM.

Example

In the following example, an aggregate BGP address is created :

router bgp 5

aggregate-address 193.0.0.0/8

Related commands

route-map

33.6.1.5 bgp always-compare-med

Syntax

To enable the comparison of the Multi Exit Discriminator (MED) for paths from neighbors in different autonomous systems, use the bgp always-compare-med command. To disallow the comparison, use the no form of this command.

bgp always-compare-med no bgp always-compare-med

Parameter

none

Default value

Not compare the MED for paths from neighbors in different autonomous systems.

Command mode

BGP configuration mode

Usage guidelines

Generally speaking, when BGP selects routes, only two from the same autonomous system can compare MED. Using **bgp always-comapre-med** command can make BGP always compare MED, regardless of whether the route comes from the same autonomous system. This can change the route selection process.

Example

The following example enables the function

router bgp 5

bgp always-compare-med

Related commands

bgp bestpath med bgp deterministic-med

33.6.1.6 bgp asnotation dot

Syntax

To enable asdot mode, run the following command. bgp asnotation dot no bgp asnotation dot

Parameter

None

Default value

asplainmode

Command mode

BGP configuration mode

Usage guidelines

The command is used to configure the display form of as. Only when as is greater than 65535 can it is displayed in the form of asdot. The command takes effect needs to activate **clear ip bgp ***.

Example

The following example shows how to enable the function:

router bgp 100

bgp asnotation dot

Related command

route bgp show ip bgp

33.6.1.7 bgp bestpath med

Syntax

To modify the process way of Border Gateway Protocol (BGP) on Multi Exit Discriminator (MED) attribute, use the **bgp bestpath med** command. To disable the feature, use the no form of this command.

bgp bestpath med {confed | missing-as-worst}

no bgp bestpath med {confed | missing-as-worst}

Parameter

parameter	description
confed	Autonous system confederation MED comparison attrubute
missing-as-worst	(Optional) Assigns the value of infinity to received routes that do not carry the MED attribute, making these routes the least desirable.

Default value

none

Command mode

BGPconfiguration mode

Usage guidelines

If the MED attribute of BGP route is not configured, the value of MED is always considered to be 0, that is the least value, which has the most priority. When configured with the missing-as-worst option, if the MED attribute of BGP route is not configured, the value of MED is always considered to be the most maximum value, which has the least priority.

By default, the same routes advertised by different BGP switches within the same autonomous system are compared to MED, while within the same autonomous system alliance, the same routes advertised by different autonomous systems are not compared to MED. After t all the same routes advert he confed option is configured, this rule is modified to make ised within the same autonomous system alliance compare MED.

Example

By default, the MED comparison between (100)and (200) doesn't occur for they are not the routes from the same sub-autonomous system. But the MED comparison occurs when configured with the bgp bestpath med confed command, for they come from the sub-autonomous system 100 and 200 respecitively in the autonomous system alliance.

Related commands

bgp always-compare-med bgp deterministic-med

33.6.1.8 bgp client-to-client reflection

Syntax

To enable or restore route reflection from a BGP route reflector to clients, use the bgp client-to-client reflection command. To disable client-to-client route reflection, use the no form of this command.

bgp client-to-client reflection

no bgp client-to-client reflection

Parameter

none

Default value

Client-to-client route reflection is enabled by default; when a route reflector is configured, the route reflector reflects routes from a client to other clients.

Command mode

BGP configuration mode

Usage guidelines

By default, the clients of a route reflector are not required to be fully meshed and the routes from a client are reflected to other clients. However, if the clients are fully meshed, route reflection is not required. In this case, use the no bgp client-to-client reflection command to disable client-to-client reflection.

Example

In the following example, the local routing switch is a route reflector, and the three neighbors are fully meshed, turn off client-to-client reflection

router bgp 5 neighbor 192..168.20.190 router-reflector-client neighbor 192..168.20.191 router-reflector-client neighbor 192..168.20.192 router-reflector-client

no bgp client-to-client reflection Related commands

neighbor route-reflector-client bgp cluster-id

33.6.1.9 bgp cluster-id

Syntax

bgp cluster-id cluster-id no bgp cluster-id [cluster-id]

Parameter

parameter	description
cluster-id	Cluster ID of this router acting as a route reflector, which can be a IP address or a
	number; maximum of 4 bytes.

Default value

The local routing switch ID of the route reflector is used as the cluster ID when no ID is specified or when the no form of this command is entered.

Command mode

BGP configuration mode

Usage guidelines

Together, one or more route reflector and its clients form a cluster. When a single route reflector is deployed in a cluster, the cluster is identified by the routing switch ID of the route reflector. Multiple route reflectors are deployed in a cluster to increase redundancy and avoid a single point of failure. This allows all route reflectors in the cluster must be configured with a 4-byte cluster ID to recognize updates from peers in the same cluster. When multiple route reflectors are configured in a cluster, the same cluster ID is assigned to all route reflectors.

Example

In the following example, the local routing switch is one of the route reflectors serving the cluster. It is configured with the cluster ID to identify the cluster. Neighbor 198.92.70.24 is a route reflection client:

router bgp 5

neighbor 198.92.70.24 route-reflector-client

bgp cluster-id 50000

Related commands

neighbor route-reflector-client show ip bgp summary

33.6.1.10 bgp confederation identifier

Syntax

To specify a BGP confederation identifier, use the bgp confederation identifier command. To remove the confederation identifier, use the no form of this command.

bgp confederation identifier autonomous-system

no bgp confederation identifier autonomous-system

Parameter

parameter	description
autonomous-system	Autonomous system number to be configured to internally include multiple
	autonomous systems.

Default value

none

Command mode

BGP configuration mode

Usage guidelines

A confederation can be used to reduce the internal BGP (iBGP) mesh by dividing a large single autonomous system into multiple subautonomous systems and then grouping them into a single confederation. In the Autonomous System Alliance, an AS that can be divided into several sub-ASs. Within each sub-AS, all IBGP rules apply, such as all IBGP neighbors must form a full mesh structure. Each sub-AS has a different AS number, so they EBGP must be run between sub-ASs. Although EBGP is used between sub-ASs, the routing performance within the confederation is similar to the IBGP routing within a single AS. That is, when crossing the boundaries of sub-ASs, Nexthop, MED, Localpreference information is preserved. To the others, the alliance looks like a single AS.

An autonomous system alliance identifier is an autonomous system. All BGP switches in the same autonomous system alliance must be configured with the same autonomous system alliance identifier.

Configuring the autonomous system alliance identifier often requires re-establishing BGP connections.

Example

In the following example, the routing domain is divided into autonomous systems AS4001, 4002, 4003, 4004, 4005,

4006 and 4007 and identified by the confederation identifier 5. The local AS is 4001. Neighbor 1.2.3.4 is a peer inside of the routing domain confederation. Neighbor 3.4.5.6 is a peer outside of the routing domain confederation. For the neighbor 3.4.5.6, your AS is 5:.

router bgp 4001 bgp confederation identifier 5 bgp confederation peers 4002 4003 4004 4005 4006 4007 neighbor 1.2.3.4 remote-as 4002 neighbor 3.4.5.6 remote-as 510

Related commands

bgp confederation peers show ip bgp summary

33.6.1.11 bgp confederation peers

Syntax

To configure subautonomous systems to belong to a single confederation, use the bgp confederation peers command in router configuration mode. To remove an autonomous system from the confederation, use the no form of this command.

bgp confederation peers autonomous-system [autonomous-system] no bgp confederation peers [autonomous-system]

Parameter

parameter	description
autonomous-system	Autonomous system number

Default value

none

Command mode

BGP configuration mode

Usage guidelines

A confederation can be used to reduce the internal BGP (iBGP) mesh by dividing a large single autonomous system into multiple subautonomous systems and then grouping them into a single confederation. In the Autonomous System Alliance, an AS that can be divided into several sub-ASs. Within each sub-AS, all IBGP rules apply, such as all IBGP neighbors must form a full mesh structure. Each sub-AS has a different AS number, so they EBGP must be run between sub-ASs. Although EBGP is used between sub-ASs, the routing performance within the confederation is similar to the IBGP routing within a single AS. That is, when crossing the boundaries of sub-ASs, Nexthop, MED, Localpreference information is preserved. To the others, the alliance looks like a single AS.

The autonomous system specified by this command is internal to the same autonomous system alliance and is a sub-autonomous system. Each sub-autonomous system is fully connected within itself.

Generally, use the **bgp confederation identifier** command to specify which autonomous system alliance the local AS belongs to.

Configuring this command often requires re-establishing BGP connections.

Example

In the following example, autonomous systems 1091, 1092 and 1093 are configured to belong to a single confederation under the identifier 1090:

router bgp 1090

bgp confederation identifier 23

bgp confederation peers 1091 1092 1093

Related commands

bgp confederation identifier show ip bgp summary

33.6.1.12 bgp dampening

Syntax

To enable BGP route dampening or change BGP route dampening parameters, use the **bgp dampening** command. To disable BGP dampening, use the no form of this command.

bgp dampening [half-time resuse-value suppress-value hold-time] **no bgp dampening**

Parameter

parameter	description
half-time	Time (in minutes) after which a penalty is decreased. Once the route has been
	assigned a penalty, the penalty is decreased by half after the half-life period.
reuse-value	Reuse values based on accumulated penalties.
suppress-value	A route is suppressed when its penalty exceeds this limit.
hold-time	Maximum time (in minutes) a route can be suppressed.

Default value

half-time:	15 minutes
reuse-value:	750
suppress-value:	2000
hold-time:	60 minutes

Command mode

BGP configuration mode

Usage guidelines

Route fluctuation control has different effects on routes in different states, mainly affecting whether the route is advertised to neighbors and whether it can be aggregated, and whether it is added to the main routing table. According to the fluctuation process of a route, its changes are described as follows:

A stable route is punished due to fluctuations. When its penalty value is less than the minimum penalty value of the suppressed route, it continues to advertise to neighbors and can be aggregated; when the penalty value of the route exceeds the Suppress value, it stops advertising to neighbors and stop being aggregated; when the route is stable, its penalty value can be reduced with time. It is always in a suppressed state until its penalty value reaches the maximum penalty value of the reused route (Reuse), and it cannot advertise to neighbors and be aggregated; When the penalty value drops below Reuse, the route becomes effective and can advertise to neighbors and be aggregated.

Example

In the following example, the bgp dampening command can be used to enable BGP route dampening function and use default parameter configuration. Use the following commands to configure different dampening parameters for different rouing configurations:

Router bgp 100 bgp dampening

Related commands

None

33.6.1.13 bgp default local-preference

Syntax

To configure default parameter of BGP process, use the bgp default command. Use the no form of this command to restore the default value.

bgp default local-preference <0-4294967295>

no bgp default local-preference

Parameter

parameter	description
local-preference	Configures default parameter of the local preference.
<0-4294967295>	Default value of the local preference

Default value

100

Command mode

BGP configuration mode

Usage guidelines

The route received from IBGP will be set as the local preference by BGP. The default value is 100, which can be modified via this command.

Example

The following example configures 200 as the local preference for the route from IBGP neighbor:

router bgp 100

bgp default local-preference 200

Related commands

None

33.6.1.14 bgp default route-target filter

Syntax

To set BGP VPN route filter function, run the following command. To return to the default setting, use the no form of this command.

bgp default route-target filter no bgp default route-target filter

Parameter

None

Default value

Enabled

Command mode

BGP configuration mode

Usage guidelines

The command is enabled by default. It is used to control VPN multi-communication. To disable the filter function, run the command "no bgp default route-target filter", which means all VPN routes are received, generally applied to the solution of cross-domain VPN option-B.

Example

The following example shows how to enable all VPN routes passing.

router bgp 100 no bgp default route-target filter

Related command

None

33.6.1.15 bgp deterministic-med

Syntax

To modify BGP's handling of MED attributes, use the following command. To restore the default values, use no form of the command.

bgp deterministic-med

no bgp deterministic-med

Parameter

none

Default value

none

Command mode

BGP configuration mode

Usage guidelines

By default, comparison of the Multi Exit Discriminator (MED) for routes from different neighbors in the same autonomous systems is enabled. The **bgp bestpath med confed** command is used to enable the comparison of the Multi Exit Discriminator (MED) for routes from different neighbors in the same autonomous systems alliance. This command is to make BGP compare MED to routes from different neighbors with the same autonomous system and the same sub-autonomous system.

Example

none

Related commands

bgp bestpath med bgp always-compare-med

33.6.1.16 bgp fast-external-fallover

Syntax

To enable fast clear neighbor function, run the following command. To return to the default setting, use the no form of this command.

bgp fast-external-fallover

no bgp fast-external-fallover

Parameter

None

Default value

Enabled

Command mode

BGP configuration mode

Usage guidelines

The function is enabled by default. If the interface status becomes **Down**, it will immediately clear the BGP dialogue of the direct external neighbor on the interface.

Example

None

Related command

router bgp clear ip bgp

33.6.1.17 bgp graceful-restart

Syntax

To configure bgp graceful restart, run the following command. bgp graceful-restart [restart-time value] | [stalepath-time value] no bgp graceful-restart [restart-time] | [stalepath-time]

Parameter

Parameter	Description
restart-time	To configure the max waiting time of protocol restarting neighbor up. The default value is 120s.
stalepath-time	To configure the max stalepath time of restarting the neighbor and aging the route. The default value is 360s.

Default value

Disabled

Command mode

BGP configuration mode

Usage guidelines

bgp graceful-restart restart-time

The command is used to configure Restart Time of BGP GR, which is used by Receiving Speaker

bgp graceful-restart stalepath-time

The configuration time should be the time of keeping aging route.

Example

None

Related command

bgp update-delay

clear ip bgp

33.6.1.18 bgp maxas-limit

Syntax

To configure the max amount limit of as which bgp route passes, run the following command.

bgp maxas-limit <value> no bgp maxas-limit

Parameter

Parameter	Description
value	The value ranges from 1 to 500.

Default value

None

Command mode

BGP configuration mode

Usage guidelines

The command is used to limit the amount of **as** which is part of **aspath** of routes received by the neighbor. The value will de dropped if the amount of **as** is greater than the configured value.

Example

None

Related command

clear ip bgp

33.6.1.19 bgp router-id

Syntax

To configure bgp router identifier, run the following command. bgp router-id <A.B.C.D> no bgp router-id <A.B.C.D>

Parameter

Parameter	Description
A.B.C.D	To be configured ID.

Default value

None

Command mode

BGP configuration mode

Usage guidelines

The command is used to configure a new router ID. Peer in the state of Established will automatically resume to BGP.

Example

None

Related command

clear ip bgp show ip bgp

33.6.1.20 bgp update-delay

Syntax

To configure bgp route update delay, run the following command. To return to the default setting, use the no form of this command.

bgp update-delay <value> no bgp update-delay

no bgp update-delay

Parameter

Parameter	Description
value	Time of the route update delay. The value ranges from 1 to 3600s.

Default value

360s

Command mode

BGP configuration mode

Usage guidelines

The command takes effect only when BGP supports GR. After BGP restart, BGP will not send the firstly update packets to local RIB until the timer is overtime. The BGP process re-selects the optimal route and then advertises it. That is to say, after BGP restarts, BGP will wait until this timer expires before sending the first update message. Another condition is that BGP updates without waiting for overtime of the timer. Refer to the command "**bgp graceful restart**" for more information.

Example

None

Related command

bgp graceful-restart clear ip bgp

33.6.1.21 bgp redistribute-internal

Syntax

To configure IBGP redistribution into an interior gateway protocol (IGP), such as RIP or OSPF, use the **bgp** redistribute-internal command. To return the router to default behavior and stop iBGP redistribution into IGPs, use the no form of this command.

bgp redistribute-internal no bgp redistribute-internal

Parameter

none

Default value

IBGP routes are not redistributed into IGP.

Command mode

BGP configuration mode

Usage guidelines

When configuring this command, you must pay attention to the configuration between the switches, otherwise it is easy to cause routing loops. After configuring this command, use the command **clear ip bgp** * to reset BGP.

Example

In the following example, BGP to OSPF3 route redistribution is enabled:

```
router ospf 3
redistribute bgp 2
!
router bgp 2
bgp redistribute-internal
!
```

Related commands

None

33.6.1.22 clear ip bgp

Syntax

To reset Border Gateway Protocol (BGP) connections using soft reconfiguration, use the clear ip bgp command. clear ip bgp {* | *ip-address* | ipv6-address | as-number |dampening | peer-group *name* | aggregates | networks | redistribute} [soft [in [prefix-filter] | out]]

Parameter

parameter	description
*	Specifies that all current BGP sessions will be reset.
ip-address	Specifies that only the identified BGP neighbor will be reset.
ipv6-address	Reset the specified IPv6 address neighbor.
as-number	Specifies that sessions with BGP peers in the specified autonomous system will
	be reset.
dampening	Clear routing information suppressed by fluctuations.
peer-group name	Specifies that the identified BGP peer group will be reset.
aggregates	Specifies that all aggregate routes will be reset.
networks	Specifies that all static network routes will be reset.
redistribute	Specifies that all redistributed routes will be reset.

soft	Initiates a soft reset.
in out	Initiates inbound or outbound reconfiguration.
prefix-filter	Soft reconfiguration of ORF inbound routin.

Command mode

EXEC

Usage guidelines

Some BGP policy configurations will not take effect immediately, because the route will only be sent once in a BGP session, so you need to reset the BGP session to send the routing information again.

If the BGP soft reconfiguration is specified by command with the **soft** keyword, the session will not be reset, and the switch sends all the routing update information again. To generate new inbound update information without resetting the BGP session, local BGP session participants should use **neighbor soft-reconfiguration** command to stores all updates received without modification, regardless of whether it is received by the inbound policy. Because this process has a large amount of storage, it should be avoided as much as possible. Outbound BGP soft configuration does not require any additional memory overhead. You can trigger an outbound reconfiguration at the other end of the BGP session to make the new inbound policy take effect.

When using **aggregates**, **networks**, **and redistribute**, the **soft** option cannot be used. They will clear the specified type of route and regenerate a new one to make the new configuration take effect.

Example

The following example reset all the current BGP sessions:

clear ip bgp *

Related commands

neighbor soft-reconfiguration show ip bgp

33.6.1.23 debug ip bgp

Syntax

To display information related to processing of the Border Gateway Protocol (BGP), use the **debug ip bgp** command. To disable debugging output, use the no form of this command.

debug ip bgp {all | dampening | event | fsm | keepalive | notify | open | vrf | update } no debug ip bgp {all | dampening | event | fsm | keepalive | notify | open | vrf | update }

Parameter

parameter	description
all	Displays all BGP debugging functions.
dampening	Displays BGP dampening.
event	Displays BGP events.
fsm	Displays BGP fsms
keepalive	Displays BGP keepalives.
notify	Displays BGP notifies
open	Displays BGP opens
vrf	Enable BGP vrf configuration information tracking.
update	Displays BGP updates.

Default value

All tracking functions are disabled.

Command mode

EXEC

Usage guidelines

It is valid globally when configured with the **debug ip bgp** command to display debugging information. If other VTY are configured with the terminal monitor command, the debugging information will also be displayed. Use the **no terminal monitor** to close this function to disable displaying any debugging information on the VTY.

The command **debug ip bgp all** can enable all BGP debugging function, including dampening, fsm,keepalives,open and update. Use the **no debug ip bgp all** command to disable all BGP debugging functions.

Example

The following example is the process to establish a BGP. The debugging information shows that a switch establishes a connection with BGP neighbor 10.1.1.3. The status changes from Idle to Established, indicating that the connection is established. Various packets information includes receiving Open, sending Open message, sending Keepalive, receiving Keepalive, etc.

The format of the debugging information includes several main parts. The first may be time information, which depends on whether the configuration allows time information to be adde. The information that really belongs to BGP is behind the time information: first indicates the information is about the BGP header information "BGP:", then the

specific BGP neighbor address, and then the specific BGP event information.

BGP: 10.1.1.3 start connecting to peer BGP: 10.1.1.3 went from Idle to Connect BGP: 10.1.1.3 went from Connect to OpenSent BGP: 10.1.1.3 send OPEN, length 41 BGP: 10.1.1.3 recv OPEN, length 41 BGP: 10.1.1.3 went from OpenSent to OpenConfirm BGP: 10.1.1.3 send KEEPALIVE, length 19 BGP: 10.1.1.3 recv KEEPALIVE, length 19 BGP: 10.1.1.3 send UPDATE, length 43 BGP: 10.1.1.3 recv KEEPALIVE, length 43 BGP: 10.1.1.3 recv KEEPALIVE, length 19 BGP: 10.1.1.3 recv KEEPALIVE, length 19

33.6.1.24 distance

Syntax

To configure the administrative distance for BGP routes, use the **distance** command. To return to the administrative distance to the default value, use the no form of this command.

distance bgp external-distance internal-distance local-distance

no distance bgp

Parameter

parameter	description
external-distance	Administrative distance for external BGP routes. Routes are external when
	learned from an external autonomous system. The default value is 20.
internal-distance	Administrative distance for internal BGP routes. Routes are internal when
	learned from peer in the local autonomous system. The default value is 200.
local-distance	Administrative distance for local BGP routes. Local routes are those networks

listed with a network router configuration command, often as back doors, for the
router or for the networks that is being redistributed from another process. The
default value is 200.

Default value

external-distance: 20 internal-distance: 200 local-distance: 200

Command mode

BGP configuration

Usage guidelines

The **distance** command is used to modify the management distance of the route, the priority of the route, and the route selection, to achieve the routing management strategy.

Changing the managemen distance of a route is dangerous unless you know exactly what you are doing. This action may increase the inconsistency of the routing table, which may damage the routing

Example

In the following example, the administrative distance for BGP routes is set:

router bgp 109 network 131.108.0.0 neighbor 129.140.6.6 remote-as 123 neighbor 128.125.1.1 remote-as 47 distance 20 20 200

Related commands

set metric set tag

33.6.1.25 filter

Syntax

To filter routes based on an interface in order to realize the administrative strategy. Use the no form of this command to delete the configuration.

filter interface <in | out> { access-list access-list-name | gateway access-list-name | prefix-list prefix-list-name } no filter interface <in | out> { access-list access-list-name | gateway access-list-name | prefix-list prefix-list-name

Parameter

parameter	description
interface	Interface name. Asterisk signifies all interfaces.
in out	Filter the incoming of outgoing routes
access-list	Specifies the access-list to filter routes
access-list-name	Name of the access list
gateway	Specifies the access list to filter gateway
access-list-name	Name of the access list
prefix-list	Specifies the prefix list to filter routes
prefix-list-name	Name of the prefix list

Default value

none

Command mode

BGP configuration mode

Usage guidelines

The **access-list** option specifies the access list to filter network prefix of routes; the **gateway** option specifies the access list to filter nexthop attribute of routes; the **prefix list** option specifies the prefix list filter network prefix of routes.

The **access list** and the **prefix list** options are mutually exclusive simultaneously. But then can be used with the **gateway** option together.

The asterisk(*) signifies all interfaces. If the filtering rules are configured on the specific interface and all interfaces, the route must meet all the filtering rules.

If a none-existant **prefix list** or **access list** is configured on an interface, then all routes will pass.

Example

The following example configures prefix-list and gateway to filter routes received on all interface:

router bgp 109

filter * in prefix-list prefix-guize gateway gateway-guize

Related commands

neighbor distribute-list neighbor filter-list neighbor route-map

33.6.1.26 maximum-paths

Syntax

To enable bgp supporting equivalent route, run the **maximum-paths** command. To return to the default setting, use the no form of this command.

maximum-paths [value] [ibgp value]

no maximum-paths[value | ibgp]

Parameter

Parameter	Description
value	Max amount of the equivalent route supported by BGP

Default value

None

Command mode

BGP configuration mode

Usage guidelines

The command is used to modify the amount of bgp supported equivalent routes. Parameters without ibgp is the modified amount of the EBGP equivalent route, which will not affect the choosing result of the optimized routes.

Example

The following example shows how to set the equivalent route which supports 3 ibgp:

router bgp 100

maximum-paths ibgp 3

Related command

clear ip bgp show ip bgp

33.6.1.27 neighbor activate

Syntax

To activate the specified neighbor corresponded address family routing information, run the **neighbor** command. To return to the default setting, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | peer-group-name} **activate no neighbor** {*ip-address* | X:X::X:X | peer-group-name} **activate**

Parameter

Parameter	Description
ip-address	IP address of the neighbor
X:X::X:X	Ipv6 address of the neighbor
peer-group-name	Peer group name

Default value

Activated

Command mode

BGP address protocol stack configuration mode

Usage guidelines

The command is used to activate the support for the specified neighbor corresponded address family routing information.

Example

None

Related command

neighbor remote-as

33.6.1.28 neighbor advertisement-interval

Syntax

To set the minimum interval of forwarding UPDATE information, run the following command. To return to the default setting, use the no form of this command.

neighbor {*ip-address* | X:X::X:X | *peer-group-name*} advertisement-interval *value* no neighbor {*ip-address* | X:X::X:X | *peer-group-name*} advertisement-interval

Parameter

Parameter	Description
ip-address	IP address of the neighbor
X:X::X:X	Ipv6 address of the neighbor
peer-group-name	BGP peer group name
Value	<1-600> Unit: s

Default value

ibgp: The default value is 1s. ebgp: The default value is 30s.

Command mode

BGP configuration mode

Usage guidelines

The command is used to set the minimum interval of forwarding UPDATE information

Example

The following example shows how to set the minimum interval of the neighbor 10.10.10.11 forwarding UPDATE information to 15s.

router bgp 1 neighbor 10.10.10.11 remote-as 2 neighbor 10.10.10.11 advertisement-interval 15

Related command

neighbor remote-as

33.6.1.29 neighbor allowas-in

Syntax

To enable BGP receiving route which including as from the neighbor learned aspath, run the following command.

To disallow receiving similar routes, use no form of the command. **neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **allowas-in** [*value*] **no neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **allowas-in**

Parameter

Parameter	Description
ip-address	IP address of the neighbor
X:X::X:X	IPv6 address of the neighbor
peer-group-name	BGP peer group name
Value	<1-10> Times which enable locak as appeared in the attribute of aspath. The
	default value is 3.

Default value

Disabled

Command mode

BGP configuration mode

Usage guidelines

The command is used to enable BGP receiving route which including as from the neighbor learned aspath

Example

The following example shows how to enable BGP receiving route which including **as** (3 times in maximum) from the neighbor (10.10.10.11) learned **aspath**:

router bgp 1 neighbor 10.10.10.11 remote-as 2 neighbor 10.10.10.11 allowas-in

Related command

neighbor remote-as

33.6.1.30 neighbor capability orf prefix-list

Syntax

To enable ORF, run the following command. To return to the default setting, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **capability orf prefix-list** {both | receive | send} **no neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **capability orf prefix-list** {both | receive | send}

Parameter

Parameter	Description
ip-address	IP address of the neighbor
X:X::X:X	IPv6 address of the neighbor
peer-group-name	BGP peer group name

Default value

Non-support

Command mode

BGP configuration mode

Usage guidelines

The command enables BGP to support ORF. ORF is a filtration mode based on prefix-list. It only informs the local required routes to the neighbor, reducing the unnecessary update packets. The command is used by combining with the command "neighbor prefix-list in". The command takes effect only when combining with the command "clear ip bgp *".

Example

The following example shows how to set the output route filtration of neighbor 10.10.10.11(receiving and forwarding):

router bgp 100

neighbor 10.10.10.11 remote-as 2

neighbor 10.10.10.11 capability orf prefix-list both

Related command

neighbor prefix-list in clear ip bgp in prefix-filter

33.6.1.31 neighbor default-originate

Syntax

To allow a BGP speaker (the local router) to send the default route 0.0.0.0 to a neighbor for use as a default route, use the neighbor default-originate command. To send no route as a default, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **default-originate** [route-map *map-name*] **no neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **default-originate**

Parameter

parameter	description
ip-address	IP address of the neighbor.
x:x::x:x	IPv6 address of the neighbor
peer-group-name	BGP peer group name
route-map	Set routing attributes with route-map.
map-name	Name of route-map

Default value

No default route is sent to the neighbor.

Command mode

BGP configuration mode

Usage guidelines

Configure this command to send the default route to the neighbor immediately. This command has nothing to do with whether route 0.0.0.0 is generated in the BGP routing table.

Example

In the following example, The default route will be advertised to the neighbor 160.89.2.3 rather than to 160.89.2.1:

router bgp 109 network 160.89.0.0 neighbor 160.89.2.1 remote-as 100 neighbor 160.89.2.3 remote-as 200 neighbor 160.89.2.3 default-originate

Related commands

neighbor ebgp-multihop

33.6.1.32 neighbor description

Syntax

To associate a description with a neighbor, use the **neighbor description** command in router configuration mode. To remove the description, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | peer-group-name} **description LINE no neighbor** {*ip-address* | X:X::X:X | peer-group-name} **description**

Parameter

parameter	description
ip-address	IP address of the neighbor.
x:x::x:x	IPv6 address of the neighbor
peer-group-name	BGP peer group name
line	Text that describes the neighbor.

Default value

There is no description of the neighbor.

Command mode

BGP configuration mode

Usage guidelines

It is easier for user to understand the configuration to associate a description with a neighbor.

Example

In the following example, the description of the neighbor is "peer with abc.com":

router bgp 109

network 160.89.0.0

neighbor 160.89.2.3 description peer with abc.com

33.6.1.33 neighbor distribute-list

Syntax

Use the **neighbor distribute-list** command to configure the access list to filter the inbound and outbound routes of BGP neighbors. Use no form of the command to delete the configuration: **neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **distribute-list** {*access-list name* } {**in** | **out**}

no neighbor {*ip-address* | X:X::X:X | *peer-group-name*} **distribute-list** {*access-list name* } {**in** | **out**}

Parameter

parameter	description
ip-address	IP address of the neighbor.
X:X::X:X	IPv6 address of the neighbor
peer-group-name	BGP peer group name
access-list name	Name of a standard or extended access list.
In	Access list is applied to incoming advertisements to that neighbor.
Out	Access list is applied to outgoing advertisements to that neighbor.

Default value

none

Command mode

BGP configuration mode

Usage guidelines

One of the methods for neighbor-based filtering BGP route advertisements is to use **neighbor distribute-list**, which uses **access-list** to filter the network prefix information of BGP routes; one method is to use **neighbor filter-list**, which uses aspath-list to filter AS_PATH attribute; another method uses **neighbor prefix-list**, which uses prefix-list to filter the network prefix information.

If you specify a non-existant access list, all routes will be allowed to pass as a result.

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command. Specifying the command for a neighbor overrides the inbound policy that is inherited from the peer group.

Example

The following router configuration mode example applies list beijing to incoming advertisements from

neighbor120.23.4.1.

router bgp 109

network 131.108.0.0

neighbor 120.23.4.1 distribute-list beijing in

Related commands

ip aspath-list neighbor filter-list ip prefix-list 1 neighbor prefix-list

33.6.1.34 neighbor ebgp-multihop

Syntax

To accept and attempt BGP connections to external peers residing on networks that are not directly connected, use the neighbor ebgp-multihop command in router configuration mode. To return to the default, use the no form of this command.

neighbor {*ip-address* | X:X::X:X | *peer-group-name*} ebgp-multihop *tt*/ no neighbor {*ip-address* | X:X::X:X | *peer-group-name*} ebgp-multihop

Parameter

parameter	description
ip-address	IP address of the BGP-speaking neighbor.
X:X::X:X	BGP session neighbor IPv6 address.
peer-group-name	BGP peer group name
ttl	Time-to-live in the range from 1 to 255 hops.

Default value

For EBGP-speaking neighbor, only directly connected neighbors are allowed, ttl default value is 1; for IBGP-speaking neighbor, ttl default is 255.

Command mode

By default, BGP connection can not be established unless EBGP neighbors are directly connected ones. The allowable maximum number of hops for EBGP neighbors can be set with the **neighbor ebgp-multihop** command. Ttl is configured to 255 if not specified.

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command.

Example

The following example allows connections to neighbor 131.108.1.1, which resides on a network that is not directly connected:

router bgp 109:

neighbor 131.108.1.1 ebgp-multihop

Related commands

neighbor default-originate

33.6.1.35 neighbor fall-over

Syntax

To activate bfd link detection function of the neighbor, run the following command. To return to the default setting, use the no form of this command.

neighbor {ip-address | X:X::X:X | peer-group-name} fall-over bfd no neighbor {ip-address | X:X::X:X | peer-group-name} fall-over bfd

Parameter

Parameter	Description
ip-address	BGP dialogue neighbor IP address
X:X::X:X	BGP dialogue neighbor IPv6 address
peer-group-name	BGP peer group name

Default value

Disabled

Command mode

The command is used to detect the link. If there is problem in the link, bfd will inform bgp to update the route, which will realize fast switch of the route.

Example

none

Related command

neighbor remote-as bfd enable

33.6.1.36 neighbor filter-list

Syntax

To configure the as-path list to filter the inbound and outbound routes of BGP neighbors, use the neighbor filter-list command. To disable this function, use the no form of this command. **neighbor** {*ip-address* | *X:X::X:X* | *peer-group-name*} **filter-list** *as-path-list name* {**in** | **out** } **no neighbor** {*ip-address* | *X:X::X:X* | *peer-group-name*} **filter-list** *as-path-list name* {**in** | **out** }

Parameter

parameter	description
ip-address	IP address of the neighbor.
x:x::x:x	IPv6 address of the neighbor
peer-group-name	BGP peer group name
as-path-list name	AS-PATH list name. The ip as-path-list command can be used to define this list.
In	Access list applied to incoming routes.
Out	Access list applied to outgoing routes.

Default value

none

Command mode

One of the methods for neighbor-based filtering BGP route advertisements is to use **neighbor distribute-list**, which uses **access-list** to filter the network prefix information of BGP routes; one method is to use **neighbor filter-list**, which uses aspath-list to filter AS_PATH attribute; another method uses **neighbor prefix-list**, which uses prefix-list to filter the network prefix information.

If you specify a non-existant aspath-list, all routes will be allowed to pass as a result.

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command. Specifying the command for a neighbor overrides the inbound policy that is inherited from the peer group.

Example

In the following example, the BGP neighbor with IP address 128.125.1.1 is not sent advertisements about any path through or from the adjacent autonomous system AS123:

ip as-path-list shang deny _123_ ip as-path-list shang deny ^123\$

router bgp 109

network 131.108.0.0

neighbor 129.140.6.6 remote-as 123

neighbor 128.125.1.1 remote-as 47

neighbor 128.125.1.1 filter-list shang out

Related commands

ip aspath-list neighbor distribute-list ip prefix-list 1 neighbor prefix-list

33.6.1.37 neighbor maximum-prefix

Syntax

To control how many prefixes can be received from a neighbor, use the **neighbor maximum-prefix** command in router configuration mode. To disable this function, use the no form of this command. **neighbor** {*ip-address* | *X:X::X:X* |*peer-group-name*} **maximum-prefix** *maximum* [**warnning-only**] **no neighbor** {*ip-address* | *X:X::X:X* |*peer-group-name*} **maximum-prefix**

Parameter

parameter	description
ip-address	IP address of the neighbor.
x:x::x:x	IPv6 address of the neighbor
peer-group-name	BGP peer group name
Maximum	Maximum number of prefixes allowed from this neighbor.
warnning-only	Only give warning message when the route exceeds the limit.

Default value

This command is disabled by default. There is no limit on the number of prefixes.

Command mode

BGPconfiguration mode

Usage guidelines

This command allows you to configure a maximum number of prefixes that a BGP router is allowed to receive from a peer. It adds another mechanism (in addition to distribute lists, filter lists, and route maps) to control prefixes received from a peer. When the number of received prefixes exceeds the maximum number configured, the router terminates the peering.

Example

The following example sets the maximum number of prefixes allowed from the neighbor at 129.140.6.6 to 1000:

router bgp 109 network 131.108.0.0

neighbor 129.140.6.6 maximum-prefix 1000

Related commands

clear ip bgp

33.6.1.38 neighbor next-hop-self

Syntax

To activate the next-hop processing of BGP updates in the switch and set itself as the next-hop address, use the **neighbor next-hop-self** command. To disable this feature, use the no form of this command.

neighbor {ip-address | X:X::X:X | peer-group-name} next-hop-self
no neighbor {ip-address | X:X::X:X | peer-group-name} next-hop-self

Parameter

parameter	description
ip-address	IP address of the BGP-speaking neighbor.
X:X::X:X	BGP session IPv6 address of the neighbor
peer-group-name	BGP peer group name

Default value

This command is disabled by default.

Command mode

BGP configuration mode

Usage guidelines

The disposal of nexthop attribute in BGP is more complicated than IGP. It usually follows three rules:

- 1. For EBGP session, configure the local ip address of BGP connection as the nexthop attribute when sending routes;
- 2. For IBGP session, configure the local ip address of BGP connection as the nexthop attribute if the routes are locally generated; if the routes are learned from EBGP, the nexthop attribute is to be filled in intactly the packet when sending routes;
- 3. If the nexthop parameter of the ip address of the routes belong to the network of BGP session, then the nexthop attribute always adopts the former nexthop;

This command is useful in unmeshed networks (such as Frame Relay or X.25) where BGP neighbors may not have direct access to all other neighbors on the same IP subnet.

If you specify a BGP peer group by using the peer-group-name argument, all the members of the peer group will inherit the characteristic configured with this command. Specifying the command with an IP address will override the value inherited from the peer group.

Example

The following example forces all updates destined for 131.108.1.1 to advertise this router as the next hop:

router bgp 109

neighbor 131.108.1.1 next-hop-self

Related commands

set ip next-hop 18

33.6.1.39 neighbor password

Syntax

To enable Message Digest 5 (MD5) authentication on a TCP connection between two BGP peers, use the **neighbor password** command. To disable this function, use the no form of this command. **neighbor** {*ip-address* | *X:X::X:X* | *peer-group-name*} **password** [*type*] *LINE* **no neighbor** {*ip-address* | *X:X::X:X* | *peer-group-name*} **password**

Parameter

parameter	description
ip-address	IP address of the BGP-speaking neighbor.
X:X::X:X	IPv6 address of the neighbor
peer-group-name	BGP peer group name
password	Enables MD5 authentication
type	Password encapsulation type: 0, 6, 7
	0 means that the configuration and display are in plain text;
	6 indicates that the configuration is in plain text and displayed in cipher text;
	7 indicates that the configuration and display are in cipher text
	Note: The case of not configuring the type is considered as type 0.
LINE	Plainr text password

Default value

none

Command mode

BGP configuration mode

Usage guidelines

Use the neighbor remote-as command to specify the neighbor before using this command.

You can configure MD5 authentication between two BGP peers, meaning that each segment sent on the TCP connection between the peers is verified. MD5 authentication must be configured with the same password on both BGP peers; otherwise, the connection between them will not be made. The length of password should

KYLAND

between 1 and 100 characters(type 7 is 202).

If you specify a BGP peer group by using the peer-group-name argument, all the members of the peer group will inherit the characteristic configured with this command.

Example

The following example configures 'abcd' as the authentication password of neighbor 120.23.4.1:

router bgp 109 neighbor 120.23.4.1 remote-as 108 neighbor 120.23.4.1 password abcd

Related commands

neighbor remote-as

33.6.1.40 neighbor peer-group

Use the **neighbor peer-group-name peer-group** command to configure the peer group. Use **no neighbor peer-group-name peer-group** to delete the configured peer group.

Use the **neighbor ip-address peer-group-name** command to configure the neighbor to join the peer group. Use the **no neighbor ip-address peer-group peer-group-name** to delete the neighbor added to the peer group.

neighbor peer-group-name peer-group

no neighbor peer-group-name peer-group

neighbor {ip-address | X:X::X:X} peer-group peer-group-name

no neighbor {*ip-address* | X:X::X:X} **peer-group** *peer-group-name*

Parameter

Parameter	Description
ip-address	Neighbor IP address.
x:x::x:x	IPv6 address of the neighbor
peer-group-name	BGP peer group name.

Default

None

Command mode

Use the **neighbor peer-group-name peer-group** command to configure the peer group.

Use the **neighbor ip-address peer-group-name** command to configure the neighbor to join the peer group. If there is no configuration on previous neighbor, use this command to configure the peer group's autonomous system number first.

Example

The following example configures a peer group named **group**, and then configures neighbor 10.1.1.1 to join the peer group:

router bgp 1 neighbor group peer-group neighbor group remote-as 2 neighbor 10.1.1.1 peer-group group

Related command

neighbor remote-as

33.6.1.41 neighbor prefix-list

Syntax

To configure prefix-list to filter neighbor routing updates, use the **neighbor prefix-list** command. To remove a filter list, use the no form of this command.

neighbor {ip-address | X:X::X:X | peer-group-name} prefix-list prefix-listname {in | out} no neighbor {ip-address | X:X::X:X | peer-group-name} prefix-list prefix-listname {in | out}

Parameter

parameter	description
ip-address	IP address of neighbor.
X:X::X:X	Neighbor IPv6 address.
peer-group-name	BGP peer group name
prefix-list	Prefix list is applied to advertisements of that neighbor
prefix-listname	Name of a prefix list.
In	Filter list is applied to incoming advertisements from that neighbor.

Out

Filter list is applied to outgoing advertisements to that neighbor.

Default value

none

Command mode

BGP configuration mode

Usage guidelines

One of the methods for neighbor-based filtering BGP route advertisements is to use **neighbor distribute-list**, which uses **access-list** to filter the network prefix information of BGP routes; one method is to use **neighbor filter-list**, which uses aspath-list to filter AS_PATH attribute; another method uses **neighbor prefix-list**, which uses prefix-list to filter the network prefix information.

If you specify a non-existant prefix-list, all routes will be allowed to pass as a result.

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command. Specifying the command for a neighbor overrides the inbound policy that is inherited from the peer group.

Example

The following router configuration mode example applies the prefix list named abc to incoming advertisements from neighbor 120.23.4.1:

router bgp 109 network 131.108.0.0 neighbor 120.23.4.1 prefix-list abc in

The following router configuration mode example applies the prefix list CustomerA to incoming advertisements from neighbor 120.23.4.1:

router bgp 109

network 131.108.0.0

neighbor 120.23.4.1 prefix-list CustomerA in

Related commands

ip prefix-list ip prefix-list description ip prefix-list sequence-number show ip prefix-list clear ip prefix-list neighbor filter-list

33.6.1.42 neighbor remote-as

Syntax

To create a BGP neighbor and specify its autonomous system number, use the neighbor remote-as command in router configuration mode. To the neighbor and all its configurations, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | peer-group-name} **remote-as** *number* [passive] **no neighbor** {*ip-address* | X:X::X:X | peer-group-name} **remote-as** *number*

Parameter

parameter	description
ip-address	IP address of the neighbor.
x:x::x:x	IPv6 address of the neighbor
peer-group-name	BGP peer group name
Number	Nmuber of autonomous system to which the neighbor belongs.
passive	This parameter indicates that the neighbor is configured in passive mode, and
	will not initiate a TCP connection actively

Default value

none

Command mode

BGP configuration mode

Usage guidelines

The neighbor with the same AS number specified in the **router bgp** command is considered to be IBGP. Otherwise, the neighbor is considered to be EBGP. This command is used to create a neighbor. Only after the neighbor is created, other commands about the neighbor can be configured. If the neighbor has been configurated, you can change its autonomous system number, which will cause the BGP connection to reset.

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command.

Example

In the following example, the local autonomous system is 109, the autonomous systems of neighbors 131.108.200.1, 131.108.234.2, 150.136.64.19 are configured as 167, 109, 99.

router bgp 109

network 131.108.0.0

network 192.31.7.0

neighbor 131.108.200.1 remote-as 167

neighbor 131.108.234.2 remote-as 109

neighbor 150.136.64.19 remote-as 99

Related commands

neighbor peer-group (creating)

33.6.1.43 neighbor remove-private-AS

Syntax

To remove private aspath when informing the route to ebgp neighbor, run the following command. To return to the default setting, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **remove-private-AS**

no neighbor {*ip-address* | X:X::X:X | *peer-group-name*} **remove-private-AS**

Parameter

Parameter	Description
ip-address	IP address of the neighbor
X:X::X:X	IPv6 address of the neighbor
peer-group-name	BGP peer group name

Default value

None

Command mode

BGP configuration mode

Usage guidelines

None

Example

In the following example, the local autonomous system is 100, the neighbor is 10.1.1.1, 20.1.1.1, the autonomous

system is 64512, 200. The command is used to delete private aspath attribute when informing 10.1.1.1 learned route to ebgp neighbor 20.1.1.1.

router bgp 100 neighbor 10.1.1.1 remote-as 64512 neighbor 20.1.1.1 remote-as 200 neighbor 20.1.1.1 remove-private-AS

Related command

neighbor remote-as

33.6.1.44 neighbor route-map

Syntax

To apply a ROUTE-MAP to filter the neighbor's inbound and outbound routes, or modify its attributes, use the **neighbor route-map** command. To remove a route map, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **route-map** *map-name* {*in* | *out*} **no neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **route-map** *map-name* {*in* | *out*}

Parameter

parameter	description
ip-address	IP address of the neighbor.
x:x::x:x	The neighbor's IPv6 address.
peer-group-name	Name of a BGP or multiprotocol BGP peer group.
map-name	Name of a route map.
in	Applies route map to incoming routes.
Out	Applies route map to outgoing routes.

Default value

none

Command mode

It is only based on neighbor to filter routes using distribute-list, prefix-list and as-path-list, while with route-map, it is not only based on neighbor to filter routes but also based on neighbor to modify the attribute of routes to realize a more flexible routing strategy.

Different routes have different attributes. The route-map can modify attributes of different kinds of routes. If an outbound route map is specified, it is proper behavior to only advertise routes that match at least one section of the route map. The rules which is valid to BGP route are as follows: match aspath-list, match community-list, match ip address, match ip nexthop, match ip prefix-list, match metric, match tag, set aggregator, set as-path, set atomic-aggregate, set community, set community-additive, set ip nexthop, set local-preference, set metric, set origin, set tag, set weight.

If configured with a non-existent route-map, then all routes is allowed to receive as a result without any modification.

If you specify a BGP or multiprotocol BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command. Specifying the command for a neighbor overrides the inbound policy that is inherited from the peer group.

Example

The following example applies a route map named internal-map to a BGP incoming route from 198.92.70.24:

router bgp 5 neighbor 198.92.70.24 route-map internal-map in route-map internal-map match as-path abc set local-preference 100

Related commands

neighbor peer-group (creating) route-map

33.6.1.45 neighbor route-reflector-client

Syntax

To configure the router as a BGP route reflector and configure the specified neighbor as its client, use the neighbor route-reflector-client command. To indicate that the neighbor is not a client, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | peer-group-name } **route-reflector-client no neighbor** {*ip-address* | X:X::X:X | peer-group-name } **route-reflector-client**

Parameter

parameter	description
ip-address	IP address of the BGP neighbor being identified as a client.
x:x::x:x	The neighbor's IPv6 address.
peer-group-name	BGP peer group name.

Default value

There is no route reflector in the autonomous system.

Command mode

BGP configuration mode

Usage guidelines

By default, all internal BGP (iBGP) sessions in an autonomous system must be fully meshed, and neighbors do not readvertise iBGP learned routes to neighbors, thus preventing a routing information loop.

If you use route reflectors, all iBGP sessions need not be fully meshed. In the route reflector model, an Interior BGP peer is configured to be a route reflector responsible for passing iBGP learned routes to iBGP neighbors. This scheme eliminates the need for each router to talk to every other router.

Use the **neighbor route-reflector-client** command to configure the local router as the route reflector and the specified neighbor as one of its clients. All the neighbors configured with this command will be members of the client group and the remaining iBGP peers will be members of the nonclient group for the local route reflector.

Example

In the following example, the local router is a route reflector. It passes learned iBGP routes to the neighbor at 198.92.70.24.

router bgp 5

neighbor 198.92.70.24 route-reflector-client

Related commands

bgp cluster-id show ip bgp

33.6.1.46 neighbor route-refresh

Syntax

To allow neighbor to use route refresh function, use the neighbor route-refresh command. Use the no form of this command to disable route refresh function.

neighbor {ip-address | X:X::X:X | peer-group-name } route-refresh

no neighbor {ip-address | X:X::X:X | peer-group-name } route-refresh

Parameter

parameter	description
ip-address	BGP neighbor and ip address
X:X::X:X	The neighbor's IPv6 address.
peer-group-name	BGP peer group name.

Default value

Disabled

Command mode

BGP configuration mode

Usage guidelines

By default, BGP route exchange for only once when the connection is established, then only exchanging changed routes afterwards. If the routing strategy configuration is modified, it will not become effective immediately. Generally, there are two methods:

- Reset BGP connection
- Use soft-reconfiguration function

The first method is relatively slow, and the routes vary greatly. The second method needs too much storage space and occupies more CPU time. These two methods are not good method, and therefore a new method arises, that is, the route refresh.

The route refresh is a negotiation option based on BGP connection, aiming to send the route refresh request packet to ask neighbor to re-send all update packets to oneself, which do not need to reset BGP connection and also do not need to store a great amount of routes. This a a more ideal solution at the moment.

Example

The following example allows neighbor at address 198.92.70.24 to use route refresh function:

router bgp 5

neighbor 198.92.70.24 route-refresh

Related commands

show ip bgp neighbors

33.6.1.47 neighbor send-community

Syntax

To specify that a community attribute should be sent to a BGP neighbor, use the neighbor send-community command. To remove the entry, use the no form of this command.

neighbor {ip-address | X:X::X:X | peer-group-name } send-community [standard | extended | both]
no neighbor {ip-address | X:X::X:X | peer-group-name }send-community [standard | extended | both]

Parameter

parameter	description
ip-address	IP address of the neighbor.
X:X::X:X	The neighbor's IPv6 address.
peer-group-name	BGP peer group name

Default value

The communities attribute can be sent to the neighbor.

Command mode

BGP configuration mode

Usage guidelines

By default, community attributes are not allowed to be sent to neighbors. **Neighbor send-community** command can be used to send routes with community attributes to neighbors.

Use the **show ip bgp neighbors** command to see whether allows to send group attribute to neigh or not.

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command.

Example

In the following example, the switch belongs to autonomous system 109 and is configured to send the COMMUNITIES and EXTCOMMUNITIES attributes to the neighbor at IP address 198.92.70.23:

router bgp 109

no neighbor 198.92.70.23 send-communityboth

Related commands

match community-list 4 set community 15 set community-additive 17

33.6.1.48 neighbor send-label

Syntax

To activate neighbor or peer group NLRI with tag, run the following command. To return to the default setting, use the no form of this command.

neighbor {ip-address | X:X::X:X | peer-group-name } send-label no neighbor {ip-address | X:X::X:X | peer-group-name }send-label

Parameter

Parameter	Description
ip-address	IP address of neighbor
X:X::X:X	IPv6 address of neighbor
peer-group-name	BGP peer group name

Default value

None

Command mode

BGP configuration mode

Usage guidelines

The command is used to activate **nlri** with **mpls** tag, which is usually applied in cross-domain vpn option solution. The command must be combined with command "route-map", if mpls tag is distributed by the public network.

Related command

neighbor remote-as neighbor route-map show ip bgp neighbors

33.6.1.49 neighbor shutdown

Syntax

To disable a neighbor or peer group, use the **neighbor shutdown** command in router configuration mode. To reenable the neighbor or peer group, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | peer-group-name } **shutdown no neighbor** {*ip-address* | X:X::X:X | peer-group-name } **shutdown**

Parameter

parameter	description
ip-address	IP address of the neighbor.
X:X::X:X	The neighbor's IPv6 address.
peer-group-name	BGP peer group name

Default value

none

Command mode

BGP configuration mode

Usage guidelines

The **neighbor shutdown** command terminates any active session for the specified neighbor or peer group and removes all associated routing information. In the case of a peer group, a large number of peering sessions could be terminated suddenly.

To display a summary of BGP neighbors and peer group connections, use the **show ip bgp summary** or **show ip bgp neighbors** command. Those neighbors with an Idle status and the Admin entry have been disabled by the **neighbor shutdown** command.

Related commands

show ip bgp summary show ip bgp neighbors

33.6.1.50 neighbor soft-reconfiguration

Syntax

To configure the software to start storing updates, use the neighbor soft-reconfiguration command in router

configuration mode. To not store received updates, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | *peer-group-name* } **soft-reconfiguration inbound no neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **soft-reconfiguration inbound**

Parameter

parameter	description
ip-address	IP address of the BGP-speaking neighbor.
x:x::x:x	The neighbor's IPv6 address.
peer-group-name	BGP peer group name
inbound	Indicates that the update to be stored is an incoming update.

Default value

The incoming update is not stored and the outgoing update is stored.

Command mode

BGP configuration mode

Usage guidelines

Outbound routing updates will always be stored, and inbound routing updates will only be stored after they are configured. Storing routing updates can take effect without changing the BGP session after changing the routing policy. Resetting the BGP session will bring a lot of network data exchange, and it causes a lot of routing fluctuations. Using soft reconfiguration can avoid a lot of network data exchange and minimize routing fluctuations.

Outbound routing updates are always stored. Inbound routing updates are not stored by default. After changing the local configuration policy, there are three ways to make the new configuration take effect:

First, reset the related BGP session; second, perform local inbound routing soft reconfiguration **clear ip bgp a.b.c.d soft in** (the local switch must be configured with neighbor a.b.c.d soft-reconfiguration); third, the other party performs outbound routing update soft reconfiguration **clear ip bgp a.b.c.d soft out** (no additional configuration required).

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command.

Example

The following example enables inbound soft reconfiguration for the neighbor 131.108.1.1. All the updates received from this neighbor will be stored unmodified, regardless of the inbound policy.

router bgp 100

neighbor 131.108.1.1 remote-as 200

neighbor 131.108.1.1 soft-reconfiguration inbound

Related commands

clear ip bgp neighbor peer-group (creating)

33.6.1.51 neighbor timers

Syntax

To set the timers for a specific BGP peer or peer group, use the neighbor timers command in router configuration mode. To clear the timers for a specific BGP peer or peer group, use the no form of this command. **neighbor** {*ip-address* | X:X::X:X | peer-group-name} **timers** keepalive *holdtime* [*Idleholdtime*] **no neighbor** {*ip-address* | X:X::X:X | peer-group-name} **timers**

Parameter

parameter	description
ip-address	A BGP peer or peer group IP address.
x:x::x:x	The neighbor's IPv6 address.
peer-group-name	Name of the BGP peer group.
Keepalive	Frequency (in seconds) with which the software sends keepalive messages to its
	peer.
Holdtime	Interval (in seconds) after not receiving a keepalive message that the software
	declares a peer dead. The range is: 0 or greater than 3
Idleholdtime	The Idleholdtime timer value in seconds

Default value

keepalive: 30 s holdtime: 90 s Idleholdtime: 0

Command mode

The timer configured for a specific neighbor or peer group overrides the default BGP neighbor timer. Generally, the holdtime is 3 times that of keepalive. If keepalive and holdtime are set to 0, sending keepalive packets is prohibited. At this time, the tcp connection manager need to notify the BGP module that the state of the connection has changed.

Idleholdtime is not 0, which means that the DampPeerOscillation function is activated. When the bgp peer is connected/disconnected 10 times within 5mins, the idleholdtimer is suppressed to keep the bgp peer in the idle state, and the keeping time is the configured idleholdtime.

When Idleholdtime is 0, the DampPeerOscillation function is disabled.

Example

The following example changes the keepalive timer to 70 seconds and the hold-time timer to 210 seconds for the BGP peer 192.98.47.10:

router bgp 109

neighbor 192.98.47.10 timers 70 210

33.6.1.52 neighbor ttl-security-hop

To configure TTL hop limit for BGP, run the following command. To return to the default setting, use the no form of this command.

neighbor {*ip-address* | X:X::X:X | *peer-group-name*} **ttl-security-hop** *value* **no neighbor** {*ip-address* | X:X::X:X | *peer-group-name*} **ttl-security-hop**

Parameter

Parameter	Description
ip-address	IP address of neighbor
x:x::x:x	IPv6 address of neighbor
peer-group-name	peer group name of BGP
value	Value of hop limit. The value ranges from 1 to 254.

Default value

None

Command mode

The command is used to configure the max hop supported by bgp neighbor. The connection exceeds this hop cannot be established.

Example

The following example shows how to configure neighbor 10.1.1.2 ttl hop limit to 1:

router bgp 100

neighbor 10.1.1.2 ttl-security-hop 1

Related command

neighbor peer-group (creating)

neighbor remote-as

33.6.1.53 neighbor update-source

To have the software allow Border Gateway Protocol (BGP) sessions to use specified interface for TCP connections, use the **neighbor update-source interface** command. To restore the automatically selected interface, use the no form of this command.

neighbor {*ip*-address | X:X::X:X | peer-group-name} **update-source interface no neighbor** {*ip*-address | X:X::X:X | peer-group-name} **update-source**

parameter

parameter	description
ip-address	IP address of the BGP-speaking neighbor.
x:x::x:x	The neighbor's IPv6 address.
peer-group-name	BGP peer group name
Interface	Interface name

default

Use the local port IP address calculated from the route to establish a TCP connection.

Command mode

By default, the ip module decides the local ip address of TCP connection when BGP establishes the connection. IP module decides interface depending on routes, and then binds the main ip address of this interface as the local address of TCP. Use the update-source command can bind the main ip address of the local specified interface during the establishment of TCP connection.

It is generally specified to use loopback interface, for the loopback interface 's protocol state is always up. And so this keeps the stability of BGP session and avoids route fluctuation.

If you specify a BGP peer group by using the peer-group-name argument, all the members of the peer group will inherit the characteristic configured with this command.

Example

The following example sources BGP TCP connections for the specified neighbor with the IP address of the loopback interface:

router bgp 110

network 160.89.0.0

neighbor 160.89.2.3 remote-as 110

neighbor 160.89.2.3 update-source Loopback0

Related commands

neighbor peer-group (creating)

33.6.1.54 neighbor weight

Syntax

To assign a weight to a neighbor connection, use the **neighbor weight** command. To remove a weight assignment, use the no form of this command.

neighbor {ip-address | X:X::X:X | peer-group-name} weight
no neighbor {ip-address | X:X::X:X | peer-group-name} weight

Parameter

parameter	description
ip-address	IP address of the neighbor.
X:X::X:X	The neighbor's IPv6 address.
peer-group-name	BGP peer group name

Weight

Weight to assign. Acceptable values are from 0 to 65535.

Default value

Routes learned through another BGP peer have a default weight of 0 and routes sourced by the local switch have a default weight of 32768.

Command mode

BGP configuration mode

Usage guidelines

BGP routing metric is the important standard to choose routes. The default metric of all routes that learned from neighbors is 0. Use **route-map** command to set metric for routes that learned from neighbor.

If you specify a BGP peer group by using the **peer-group-name** argument, all the members of the peer group will inherit the characteristic configured with this command.

Example

The following router configuration mode example sets the weight of all routes learned via 151.23.12.1 to 50:

router bgp 109

neighbor 151.23.12.1 weight 50

Related commands

neighbor peer-group (creating)

set weight 23

33.6.1.55 network (BGP)

Syntax

To specify the networks to be advertised by the Border Gateway Protocol (BGP), use the network command. To remove an entry from the routing table, use the no form of this command. **network A.B.C.D/n** [**route-map** *map-name* | **backdoor**] **no network A.B.C.D/n**

parameter

parameter	description
A.B.C.D/n	Network prefix that BGP will advertise

route-map	The specified route map
map-name	Name of the route map
backdoor	Backdoor network

Default value

No networks are specified.

Command mode

BGPconfiguration mode

Usage guidelines

There are three ways to specify the networks to be included by the BGP:

- Via the redistribute command to include routes dynamically
- Via the network command to include routes statically
- Via the aggregate command to include routes

All routes generated by these three methods are regarded as the local routes which can be informed to other peers but not to be included by local IP routing table.

A totally same route in the main routing table of IP is the basis for the network configured with the network command to become effective.

A more precise or totally same route in the local BTP routing table is the basis for the network to become effective that configured with the **aggretgate-address** command.

The length of mask code is generated in term of standard network type if not specified

Use the route-map to configure route's attribute.

The backdoor network is used to modify route distance rather than to generate routes. It changes route's default distance that learned from the neighbor to the local route's distance. The default value is 200.

The maximum number of network commands you can use is determined by the resources of the router, such as the configured NVRAM or RAM.

Example

The following example sets up network 131.108.0.0/8 to be included in the BGP updates:

router bgp 120

network 131.108.0.0/8

Related commands

redistribute (BGP) aggregate-address

33.6.1.56 redistribute(BGP)

Syntax

To redistribute a route process to Border Gateway Protocol (BGP), use the redistribute command. To remove the redistribute command from the configuration file, use the no form of this command. **redistribute protocol** *process-id*][**route-map** *map-name*] [**metric** *value*]

no redistribute protocol process-id

Parameter

parameter	description
protocol	Type of routing protocol
process-id	Process id of routing protocol, such as process if of ospf
route-map	Applies route map to configure route attribute
map-name	Name of route map
metric	Redistribution routing Mertic
value	Metric value. The range is from 0 to 4294967295.

Default value

Disabled

Command mode

BGPconfiguration mode

Usage guidelines

There are three ways to specify the networks to be included by the BGP:

- Via the redistribute command to include routes dynamically
- Via the network command to include routes statically
- Via the aggregate command to include routes

All routes generated by these three methods are regarded as the local routes which can be informed to other peers but not to be included by local IP routing table.

Use redistribute command to include routes dynamically to BGP. The change of route source will be reflected to BGP automatically. The automatically-included routes will be informed to other neighbors. The configuration of the redistribute command will re-check the specified type of routes in the routing table. The outer routes in OSPF

KYLAND

will not be included to BGP. Use the **route-map** to configure route's attribute.

Example

The following example configures routes from OSPF process 23 to be redistributed into BGP:

router bgp 109

redistribute ospf 23

related commands

route-map 1

33.6.1.57 router bgp

Syntax

To enable the BGP routing process or enter in BGP configuration mode, use the router bgp command in global configuration mode. To disable a routing process, use the no form of this command.

router bgp as-number

no router bgp *as-number*

Parameter

parameter	description
as-number	Number of autonomous system

Default value

No BGP routing process is enabled by default.

Command mode

Global configuration mode

Usage guidelines

The system allows to configure one BGP process at most. The BGP task is established in the process of system initialization, and it is activated when the BGP process is started up. The BGP task only receives information from command module without configuring the BGP process. It is not related to routing module or any other module and will not response other information. The related show and clear command are all invalid.

Use no router bgp command to delete BGP process, and at the same time other configuration related to BGP will also be deleted, such as neighbors and so on. The BGP route in routing table is also be deleted.

To configure BGP process using the **show running** and **show ip bgp summary** commands to check.

Example

The following example configures a BGP process for autonomous system 200:

router bgp 200

Related commands

neighbor remote-as

33.6.1.58 show ip bgp

Syntax

To display entries in the Border Gateway Protocol (BGP) routing table, use the show ip bgp command in user EXEC or privileged EXEC mode.

show ip bgp [network]

Parameter

parameter	description
network	Displays the specified routing information

Command mode

EXEC

Usage guidelines

The **show ip bgp** command is used to display the entire IPv4 BGP routing table. After specifying a network, only the detailed information of the network is displayed.

Example

The following is a group of BGP displaying information. The former two lines display some marked information. Status code indicates the status of the table entry. The status is displayed at the beginning of each line in the table. S indicates the table entry is suppressed, which is the invalid route and will not be chosen. D indicates the table entry is dampened, which is the invalid route. H indicates the table entry history, which is not a ture route and is the invalid route. "* "indicates the table entry is valid, which can be chosen as the best route. " > "indiates the table entry is the best entry to use for that network. "I" indicates the table entry was learned via an internal BGP (iBGP) session.

Origin codes indicates the origin of the entry. I is the entry originated from an Interior Gateway Protocol (IGP). E is the entry originated from an Exterior Gateway Protocol (EGP). ? is the origin of the path is not clear.

For each route, display its status, destination address, gateway address, metric (MED), Local-preference, Weight, AS Path and other attributes. The gateway address of the locally generated route is 0.0.0.0. **Metric** is not displayed

if it is not set. Local-preference is 100 by default for IBGP routes, and the default value is included if it is not displayed, or the set value is displayed. **Weight** is 32768 for locally generated routes, or 0 if not set. The **AS Path** field displays the AS Path attribute of the route, including the AS list and the Origin attribute. Enclosed in parentheses are AS-set or AS autonomous sub-systems.

The last line displays number of routes, including all valid and invalid routes.

B3710_118#show ip bgp

Status codes: s suppressed, d damped, h history, * valid, > best, i internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* 192.168.10.0/24 192.168.69.5 0 10 400 i

*>i192.168.10.0/24 192.168.69.14 100 0 (65030) 400 i

*>i192.168.11.0/24 192.168.69.14 100 0 (65030) 400 i

* 192.168.65.0/30 192.168.69.1 100 0 (65020) 10 ?

*> 192.168.65.0/30 192.168.69.5 0 10 ?

* 192.168.65.4/30 192.168.69.1 100 0 (65020) 10 ?

*> 192.168.65.4/30 192.168.69.5 0 10 ?

* 192.168.65.8/30 192.168.69.1 100 0 (65020) 10 ?

*> 192.168.65.8/30 192.168.69.5 0 10 ?

* 192.168.66.0/30 192.168.66.2 100 0 (65020) ?

*> 192.168.66.0/30 0.0.0.0 32768 ?

* i192.168.66.4/30 192.168.66.6 100 0 ?

*> 192.168.66.4/30 0.0.0.0 32768 ?

*>i192.168.66.8/30 192.168.66.6 100 0 ?

*>i192.168.67.0/30 192.168.69.18 200 100 0 500 ?

Number of displayed routes: 15

Related commands

show ip bgp community show ip bgp neighbors show ip bgp paths show ip bgp prefix-list show ip bgp regexp show ip bgp summary

33.6.1.59 show ip bgp community

Syntax

To display statistics of BGP community structure, use the **show ip bgp community** command. **show ip bgp community**

Parameter

none

Command mode

exec

Usage guidelines

This command is used to display statistics information of BGP communities attribute structure in the system.

Related commands

show ip bgp neighbors show ip bgp paths show ip bgp prefix-list show ip bgp regexp show ip bgp summary

33.6.1.60 show ip bgp ipv6 unicast

Syntax

To show the entry in ipv6 BGP routing table, run the following command. **show ip bgp ipv6 unicast[network]**

Parameter

Parameter	Description
network	Show the designated routing information.

Command mode

Exec

The whole ipv6 BGP routing table is shown if the network is not designated. Details of the network is only shown if the network is designated.

Example

The following is display information of a group of BGP. The front two rows show some tag information.

Status code describes definition of the tag in front of the route. S represents suppression, which indicates the route is suppressed by the aggregation configuration and is an invalid route which will not be selected; d represents attenuation, which indicates the route is suppressed by the fluctuation and is an invalid route; h represents the historic route, which represents the route is saved as of the attenuation control and there is no a real route but only an invalid route. * represents a valid route, which indicates the route is valid and can be selected as the best route; > represents the best route, which indicates the route is from IBGP neighbor, which does not include routes from the sub-autonomous system of the autonomous league.

Origin codes describes the Origin of the route, i means IGP, e means EGP, ? means indefinite.

The command shows the attributes including the status, destination addres, gateway address, Metric(MED), Local-preference, Weight and AS Path of every route. The gateway address of the local route is 0.0.0.0. Metric is not shown if it is not configured with a definite setting. Local-preference for IBGP route is 100 by default; it includes the default value even if it is not shown or it is shown with the set value. Weight is 32768 or the set value; if it is not configured, it is 0. AS Path domain shows the attribute of AS Path, including AS list an Origin attribute. In the brackets is AS-set or sub-autonomous system of the autonomous system league.

The last row shows the number of routes shown altogether, including valid and invalid routes.

Related command

None

33.6.1.61 show ip bgp neighbors

Syntax

To display information about Border Gateway Protocol (BGP) and TCP connections to neighbors, use the show ip bgp neighbors command.

show ip bgp neighbors [ip-address] [received-routes | routes | advertised-routes]

Parameter

parameter	description
ip-ddress	IP address of a neighbor. If this parameter is omitted, information about all neighbors is displayed.
received-routes	Displays all received routes (both accepted and rejected) from the specified

	neighbor.
routes	Displays all routes that are received and accepted.
advertised-routes	Displays all routes that have been advertised to neighbors.

Command mode

EXEC

Usage guidelines

With this command, you can see detailed information and current status of neighbors, and you can also see some configuration information. By specifying the corresponding keywords, you can display the routes related to the neighbor.

Related commands

show ip bgp show ip bgp community show ip bgp paths show ip bgp prefix-list show ip bgp regexp show ip bgp summary

33.6.1.62 show ip bgp paths

Syntax

To display all the BGP paths in the database, use the show ip bgp paths command. **show ip bgp paths**

Parameter

none

Command mode

EXEC

Usage guidelines

This command is used to display statistics information of BGP paths structure.

Related commands

show ip bgp

show ip bgp community show ip bgp neighbors show ip bgp prefix-list show ip bgp regexp show ip bgp summary

33.6.1.63 show ip bgp prefix-list

Syntax

To display ipv4 BGP routing information matching the specified prefix-list, use the **show ip bgp prefix-list** command.

show ip bgp prefix-list {prefix-list name}

Parameter

parameter	description
prefix-list name	Name of prefix-list

Command mode

EXEC

Usage guidelines

This command specifies prefix-list to filter display of the show ip bgp command. Only the routes matching the prefix-list will be displayed.

Related commands

show ip bgp show ip bgp community show ip bgp neighbors show ip bgp prefix-list show ip bgp regexp show ip bgp summary ip prefix-list ip prefix-list description ip prefix-list sequence-number show ip prefix-list clear ip prefix-list

33.6.1.64 show ip bgp regexp

Syntax

To display routes matching the autonomous system path regular expression, use the show ip bgp regexp command.

show ip bgp regexp regular-expression

Parameter

parameter	description
regular-expression	Regular expression to match the BGP autonomous system paths.

Command mode

EXEC

Usage guidelines

This command specifies the regular expression to filter the display of the show ip bgp command. Only the routes matching the regular expression will be displayed.

Related commands

show ip bgp show ip bgp community show ip bgp neighbors show ip bgp prefix-list show ip bgp regexp show ip bgp summary

33.6.1.65 show ip bgp summary

Syntax

To display the status of all Border Gateway Protocol (BGP) connections, use the show ip bgp summary command. show ip bgp summary

Parameter

This command has no parameters or keywords.

Command mode

EXEC

Usage guidelines

Some global configurations about the BGP protocol can be viewed through the **show ip bgp summary** command. Such as global **distance** configuration, **IGP** synchronization configuration, autonomous system alliance identification number, autonomous system alliance member, route reflection cluster identification, etc. In addition, the local autonomous system number, local router-id, and general information of all neighbors can also be seen through this command.

Example

The following is sample output from the show ip bgp summary command:

router bgp 4 BGP local AS is 4 Router ID is 192.168.20.72 IGP synchronization is enabled Distance: external 20 internal 200

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pref

192.168.20.12 4 5 0 0 0 0 0 0 never Connect

Related commands

show ip bgp show ip bgp community show ip bgp neighbors show ip bgp paths show ip bgp prefix-list show ip bgp regexp show ip bgp summary

33.6.1.66 synchronization

Syntax

To enable the synchronization between BGP and your Interior Gateway Protocol (IGP) system, use the **synchronization** command. Use the no form of this command to disable this function.

synchronization

no synchronization

Parameter

none

Default value

Disabled

Command mode

BGP configuration mode

Usage guidelines

IGP synchronization means that when BGP receives a route from IBGP, whether it needs to wait until the route appears in the routing table in the form of IGP before advertising the route to other EBGP neighbors. When IGP synchronization is enabled, BGP must wait until the IBGP route appears in IGP to advertise to other EBGP neighbors; when IGP synchronization is not disabled, BGP will advertise to other EBGP neighbors when it receives IBGP routes. The IGP includes direct routes, static routes, RIP routes, OSPF routes, and other internal gateways protocol routing.

IGP function is disabled by default.

Example

The following example enables switch to advertise the ibgp route after waiting for IGP synchronization.

router bgp 120

synchronization

Related commands

router bgp

33.6.1.67 table-map

Syntax

To modify metric and tag values when the IP routing table is updated with BGP learned routes, use the **table-map** command. To disable this function, use the no form of the command. **table-map** <*name*> **no table-map**

Parameter

parameter	description
name	Route map name from the route-map command.

Default value

none

Command mode

BGP configuration mode

Usage guidelines

By setting the table-map, you can filter or modify attributes when BGP adds entries to the routing table.

Example

none

Related commands

none

33.6.1.68 timers

Syntax

To modify the default timers of BGP neighbors,, use the timers bgp command. To reset the BGP timing defaults, use the no form of this command.

timers bgp <keepalive> <holdtime> [Idleholdtime]

no timers bgp

Parameter

parameter	description
keepalive	Frequency (in seconds) with which the software sends keepalive messages to its
	peer.
holdtime	Interval (in seconds) after not receiving a keepalive message that the software
	declares a peer dead.
Idleholdtime	Default Idlehold interval of BGP neighbor

Default value

Keepalive:	30 seconds
Holdtime:	90 seconds
Idleholdtime: 0	

Command mode

BGP configuration mode

Usage guidelines

Configure BGP neighbor clock in global configuration mode to modify default clock configuration. The configuration towards neighbor is prior to global configuration.

Example

The following example changes the keepalive timer to 10 seconds and the hold-time timer to 40 seconds:

router bgp 100

timers bgp 10 40

Related commands

neighbor timers

33.7 Public Routing Configuration Commands

33.7.1 Ip aspath-list Configuration Commands

33.7.1.1 ip as-path access-list

Syntax

To create the as-path list, run **ip as-path access-list**. To cancel the configured as-path list, run **no ip as-path access-list**.

ip as-path access-list <name> <deny | permit> <regexp>
no ip as-path access-list <name> [deny | permit] [regexp]

Parameter

Parameter	Description
name	Name of the as-path list
deny permit	Attribute of the as-path list
regexp	Regular expression of the as-path

Default value

All as-path expressions except those having a clear explanation on the permit regulation are declined by default.

Command mode

Global configuration mode

Usage guidelines

The AS-path list is used to filter the AS-PATH attribute of the BGP route. The AS-PATH attribute of the BGP route is a number sequence which is expressed in form of the character string. The number at the right end is the autonomous system number for the route starting, while the numbers leftwards in turn are the numbers of the autonomous systems which the BGP route passes. For example, character string 22 23 98 means that the BGP route is transmitted from autonomous system 98, passes through autonomous system 23 and autonomous system 22, and finally reaches the local autonomous system.

The AS-path list in the system is identified with the name. The total number of AS-path lists which are allowed to configure in the system is limited by the resource of the system. The same AS-path list can be configured with multiple matchup regulation. The procedure to apply the AS-path list is to check whether the matchup is successful or not according to the configuration order. Once a matchup is found to be successful, the following check-up will be stopped and the nature of the regulation (deny/permit) is then returned. If the matchup of all regulations is not successful, the nature of the regulation, **deny**, will be returned. Each regulation is organized according to their configuration order.

The as-path expression is normally the regular expression. The special characters which are always used in the expression are shown in the following table:

Character	Symbol	Meaning
Full stop		Matches any single character, including space.
Asterisk	*	Matches the 0 sequence or more sequences.
Plus	+	Matches the 1 sequence or more sequences.
Question mark	!	Follows the number 0 or 1.
Addition character	^	Starting point of the matchup character string
Dollar	\$	End point of the matchup character string
Underline	-	Matches these symbols: "", "{ }", "()", "^", "\$" and "space".
Square bracket	[]	Stands for the range of the single-character mode.
Hyphen	-	Separates a range.

With the aid of the presentation methods of the AS-PATH attribute, the correct usage of the regular expression can help create the powerful AS-path list. The following examples are given:

.* Representing any attribute of the AS path.

^\$ Representing the attributes of the null path.

^22\$ Representing the path attributes of autonomous system 22.

^22_ Representing the path attribute starting with 22.

_22\$ Representing the path attribute starting with 22, such as 22, 34 22 and 99 45 22.

22 R epresenting the path attribute containing 22, like 23 22 45 and 442 22 23 44

The **as-path list** command can be used together with the **match as-path** command and the **neighbor filter-list** command.

Example

In the following example, the defined **as-path list hell** command permits all path attributes starting with 23 or containing 22:

ip as-path access-list hell permit ^23

ip as-path access-list hell permit _22_

Or:

ip as-path access-list guangzhou deny ^300

ip as-path access-list guangzhou deny _300_

ip as-path access-list guangzhou permit .*

The AS-PATH attributes starting with 300 or containing 300 will be declined, while other AS-PATH attributes can pass. If the defined order is different, the results will be totally different. The following AS-PATH attributes can pass.

ip as-path access-list guangzhou permit .*

ip as-path access-list guangzhou deny ^300

ip as-path access-list guangzhou deny _300_

Related command

match as-path neighbor filter-list

33.7.1.2 show ip aspath-list

Syntax

To display the AS-path list configured in the system, run the following command: **show ip as-path-list** [*name*]

Parameter

Parameter	Description
name	Name of the as-path list

Default value

None

Command mode

EXEC

Usage guidelines

If the name of the as-path list is not designated, all configured as-path lists in the system will be displayed.

Example

The following example shows that all as-path lists in the system will be displayed:

show ip as-path-list

Related command

ip as-path access-list

33.7.2 ip community-list Configuration Commands

33.7.2.1 ip community-list

Syntax

To create the regulations for the community list of the BGP route, run **ip community list**. To cancel the regulations for the community list, run **no community list**.

ip community-list {expanded | standard} <name> {deny | permit} [aa:nn | 1-4294967295 | local-AS | no-advertise | no-export]

no ip community-list {expanded | standard} <name> {deny | permit} [aa:nn | 1-4294967295 | local-AS | no-advertise | no-export]

Parameter

Parameter	Description
name	Name of the community list

deny permit	Attribute of the community list
<1-4294967295>	Value of the community, which is a 32-bit integer
aa:nn	New form of the community value
	aa stands for a 16-bit value. nn stands for the next 16-bit value.
no-advertise	Means that no neighbor will be reported.
local-AS	Means that the EBGP neighbor outside of the local autonomous system or in the
	same autonomous system ally will not be reported.
no-export	Means that the neighbors in the local autonomous system or the autonomous
	system ally will not be reported.

Default value

All communities except those having a clear explanation on the **permit** regulation are declined by default.

Command mode

Global configuration mode

Usage guidelines

The community list is used to filter or set the community attribute of the BGP route. The community attribute is a group number or a community group number. A community number is a 4-byte value. The community numbers between 0x00000000 and 0x0000FFFF or between 0xFFFF0000 and 0xFFFFFFFFF are reserved. These community numbers are globally accepted. The frequently-used community numbers are the following ones:

NO_EXPORT (0xFFFFF01): After the route with this community number is received, the peers outside the autonomous system or autonomous system ally will not be reported.

NO_ADVERTISE(0xFFFFF02): After the route with the community number is received, no peers will be reported.

NO_EXPORT_SUBCONFED (0xFFFFF03): It is always called as LOCAL_AS. After the route with the community number is received, the peers outside the local autonomous system are not reported.

The community list in the system is identified by a name. The total number of the community lists which can be configured in the system is limited by the system's resource. The same community list can be configured with multiple matchup regulations. The procedure to apply the community list is to check whether the matchup is successful or not according to the configuration order. Once a matchup is found to be successful, the following check-up will be stopped and the nature of the regulation (deny/permit) is then returned. If the matchup of all regulations is not successful, the nature of the regulation, **deny**, will be returned. The order to check each regulation is the configuration order.

One community-list regulation has three elements: name, regulation's attribute (deny/permit) and community number sequence. The community number sequence is a set of a group of community numbers. If all community numbers in the community attribute are in the community sequence with designated regulations, the matchup is successful. If not, the matchup fails and the next regulation will be matched.

The community list command can be used together with commands route-map and match community.

Example

In the following example, the community will be declined by the **ip community-list yall** command if the value of the community is 5 or 10; the community will be accepted by the **ip community-list yall** command if the value of the community is 15 or 20.

ip community-list standard yall deny 5 10

ip community-list standard permit 15 20

Related command

match community-list 4

33.7.2.2 show ip community-list

Syntax

To display the community list configured in the system, run the following command: **show ip community-list** <*name*>

Parameter

Parameter	Description	
name	Name of the community list	

Default value

None

Command mode

EXEC

Usage guidelines

If the name of the community list is not designated, all configured community lists in the system will be displayed.

Example

The following example shows that all community lists in the system will be displayed:

Show ip community-list

Related command

ip community-list

33.7.3 ip prefix-list commands

33.7.3.1 clear ip prefix-list

Syntax

To delete the statistics information about the designated prefix list, run the following command: **clear ip prefix-list** [<name> [<*prefix*>]]

Parameter

Parameter	Description
name	Name of the prefix list
prefix	Network prefix which is in the A.B.C.D/n format n here stands for the length of the mask.

Default

None

Command mode

EXEC

Usage guidelines

If the prefix is not designated, all statistics information in the prefix list will be canceled.

Example

None

Related command

ip prefix-list description ip prefix-list sequence-number show ip prefix-list clear ip prefix-list

33.7.3.2 ip prefix-list

Syntax

To establish a prefix list or add a prefix-list regulation, run **ip prefix-list**. To cancel the configuration, run **no ip prefix-list**.

ip prefix-list <*name*> [<**seq**> <*seq_number*>] <**deny | permit**> <**prefix | any**> [<*ge*> <*value*>] [<**le**> <*value*>]

no ip prefix-list <name> [<seq> <seq_number>] <deny | permit> <prefix | any> [<ge> <value>] [<le>
<value>]

Parameter

Parameter	Description
name	Name of the prefix list
seq	Designates the sequence number.
seq_number	Value of the sequence number
deny permit	Attribute of the prefix list
prefix any	Designated prefix or any prefix
ge	Designates the minimum length of the matched prefix.
value	Length of the prefix which ranges from 0 to 32
le	Designates the maximum length of the matched prefix.
value	Length of the prefix which ranges from 0 to 32

Default value

None

Command mode

Global configuration mode

Usage guidelines

The prefix list is a set of regulations for filtrating the network prefix. Each regulation has five elements: sequence, deny/permit, prefix and length (a.b.c.d/n), upper limitation (le y) and bottom limitation (ge x). All regulations are sorted according to the sequence. When the prefix list is applied, the regulation of the smallest sequence is first checked. If the matchup is successful, other regulations stop the matchup operation and the matched regulation's attribute (deny/permit) is returned.

When you check whether a regulation matches a designated network prefix, you should not only check the length of the network prefix but also check whether the network prefixes have the same length in the designated length. For example, to check whether a regulation of a prefix list, **ip prefix-list test seq 5 A.B.C.D/M ge X le Y**, matches the designated network **a.b.c.d/n**, the following procedure will be taken.

Firstly, check whether the mask length of the network (n) meets the requirement of the expression: $X \le n \le Y$ (if **ge X** is not designated, the expression is $M \le n \le Y$; if the **le Y** is not designated, the expression is $X \le n \le 32$; if both **ge X** and **le Y** are not designated, the expression is n = M). If the mask length meets the requirements of the expression, the next operation will be performed. If the mask length does not meet the regulation, the following regulation will be used.

Check whether network a.b.c.d/n and the first M bit of A.B.C.D are same. If they are same, the regulation is met and the attribute of the regulation is returned; if the regulation is not met, the next regulation will be seen whether it is met.

If all regulations are not met, the **deny** attribute will be returned.

Regarding the sequence number of the prefix list, there is another command: **ip prefix-list sequence-number**. This command is used to control whether the prefix list uses the sequence number. For details, please refer to the description of this command.

The no form of the command specifying only the name will delete the entire prefix list.

Example

The following are destination routes and prefix lists:

Destination route 1:	120.120.0.0/14
Destination route 2:	120.120.0.0/16
Destination route 3:	120.120.0.0/25
Destination route 4:	130.130.0.0/16
Destination route 5:	130.130.0.0/8
Destination route 6:	130.130.0.0/24
Destination route 7:	12.0.0.0/8

Prefix-list:

ip prefix-list sample permit 120.120.0.0/8 ge 16 le 24

ip prefix-list sample deny 130.130.0.0/16

The following are the matchup results: Destination route 1: unsuccessful, deny Destination route 2: successful, permit Destination route 3: unsuccessful, deny Destination route 4: successful, deny Destination route 5: unsuccessful, deny Destination route 6: unsuccessful, deny Destination route 7: unsuccessful, deny

Related command

ip prefix-list description ip prefix-list sequence-number show ip prefix-list clear ip prefix-list

33.7.3.3 ip prefix-list description

Syntax

To configure the description of the prefix list, run **ip prefix-list**. To cancel the description of the prefix list, run **no ip prefix-list**.

ip prefix-list <name> <description> <strings>
no ip prefix-list <name> <description>

Parameter

Parameter	Description
name	Name of the prefix list
description	Designates the description information of the prefix list.
strings	Description information

Default value

None

Command mode

Global configuration mode

Usage guidelines

None

Example

The following example shows how to add the description information to prefix-list hard for convenient reading:

ip prefix-list hard deny any

ip prefix-list hard description This prefix-list is used to filter routes from neighbor hard

Related command

ip prefix-list description ip prefix-list sequence-number show ip prefix-list clear ip prefix-list

33.7.3.4 ip prefix-list sequence-number

Syntax

To enable the prefix list to use the sequence, run **ip prefix-list** *sequence-number*. To cancel the sequence, run **no ip prefix-list** *sequence-number*.

ip prefix-list sequence-number

no ip prefix-list sequence-number

Parameter

None

Default value

The sequence is used by default.

Command mode

Global configuration mode

Usage guidelines

The command is used to decide whether each regulation of the prefix list has been allocated with a sequence. After the sequence is used, the same sequence corresponds to only one regulation. Hence, if a regulation with a same sequence is newly generated, the previously old regulation will be deleted. If the sequence is not used, you have to run a command to delete the regulation. The sequence may not be designated during configuration. The system then allocates the sequence for all regulations. The sequence starts from 5 and adds 5 each time.

Example

None

Related command

ip prefix-list description ip prefix-list sequence-number show ip prefix-list clear ip prefix-list

33.7.3.5 show ip prefix-list

Syntax

To display the information about the prefix list or all prefix lists, including the configuration information and

statistics information about the prefix list, run the following command: show ip prefix-list [<summary | detail> <name>]

Parameter

Parameter	Description
summary	Summary information
detail	Detailed information
name	Name of the prefix list

Default value

None

Command mode

EXEC

Usage guidelines

If the name of the prefix list is not designated, all information about the prefix list will be displayed.

Example

The following example shows that a prefix list is configured.

ip prefix-list yell permit 130.12.19.0/24

ip prefix-list yell permit 140.20.0.0/16 ge 16 le 24

The following information is shown after the **show ip prefix-list detail** command is run:

Prefix-list with the last deletion/insertion: yell

ip prefix-list yell: 2 entries

count: 2, range entries: 1, sequences: 5 - 10

seq 5 permit 130.12.19.0/24 (hit count: 0, refcount: 10)

seq 10 permit 140.20.0.0/16 ge 16 le 24 (hit count: 0, refcount: 10)

The first information line indicates that the recently-modified prefix list is yell.

Starting from the second information line, all information about the prefix list is listed. Here only one prefix list is configured, whose name is **yell**.

Count: 2, indicating that the prefix list has two options.

Range entries: 1, indicating that the number of network range defined in the prefix list is 1.

Sequences: 5-10, indicating the sequence range of each option in the prefix list

The following are the definition of each option and the statistics information.

Hit count: 0, indicating that the times of option matchup is 0

Refcount: 10, meaning that the times of option matchup are 10

Related command

ip prefix-list description ip prefix-list sequence-number show ip prefix-list clear ip prefix-list

33.7.4 route-map Commands

33.7.4.1 route-map

Syntax

To create a route map or define a route-map item, run **route-map**. To delete the created route map or the defined route-map item, run **no route-map**.

route-map name [seq] [deny | permi] no route-map name [seq] [deny | permi]

Parameter

Parameter	Description
name	Name of the route map
seq	Sequence of the route map whose default value is 0
deny permit	Attribute of the route map whose default value is permit

Default value

By default, the value of the **seq** parameter is 10 and the attribute is **permit**.

Command mode

Global configuration mode

Usage guidelines

The route map is used to modify the route's attribute or the filtration route. The route map is always used for the strategy of the dynamic routing protocol, such as redistribute route, filtration route, setting the route's attribute for strategic routing, and so on.

The same route map may have multiple items. The total number of the route map in the system is limited by the system's resource. Each item in the same route map can be designated with the sequence or the system will automatically generate the sequence for each item. Each item has a kind of attribute (deny/permit); each item can be conducted with the matchup regulation (match), regulations (set) and exit strategies (on-match).

Tue matchup regulation is used to check whether a feature of an object meets a certain rule. If the object meets all matchup regulations in the item, the object matches the item successfully, or the item matchup fails. If an item is not configured with the matchup regulation, any object cannot match the item. If the matchup regulation adopts other lists such as the access list, prefix list, community list or as-path list to check whether an object is matched, the returned value of the list is the result of regulation matchup.

The setting regulation is used to set an attribute of an object. If an object matches the item successfully and the attribute of the item is **permit**, the setting regulations configured under the item are used to modify the attribute of the object. If the object matches the item and the attribute of the item is **deny**, the exit strategy will be checked. If the object fails to match the item, the next item matchup will be conducted until the matchup succeeds.

The exit strategy decides the actions after the object matches the item successfully. If an object matches an item successfully and the item have not configured with the exit strategy, the checking to other items will be stopped and the attribute of the item (deny/permit) will be returned. If **on-match next** is configured, the checking on the next item will be continued. If **on-match goto N** is configured, the designated item, item N, will be the first one to be checked; if the designated item does not exist, the attribute of the item (deny/permit) will be returned.

Under the same item, only one matchup regulation of the same attribute or the settings regulation can be configured. The following matchup regulation or settings regulation configured will replace the previous one. The following configuration can be done for the same item:

match metric 34

set metric 100

In the previous example, there is only one **match** regulation and the **set** regulation.

To realize multiple values for matching the same attribute, you can use the exit regulations.

```
route-map match-multi-metric 10 permit
match metric 10
on-match goto 30
route-map match-multi-metric 20 permit
match metric 20
on-match goto 30
route-map match-multi-metric 30 permit
set metric 100
```

In the same example, the route whose metric is 10 or 20 is matched and its metric will be set to 100.

During configuration, the system can automatically generate a sequence for each item, starting from 10 by default and then adding 10 in turn. When the route map is applied, the system will check the sequence of the item from small to big.

The route map can handle different types of routes, some **match** regulations and **set** regulations only suitable for parts of routes. If you try to use the unsupported **match** regulations or **set** regulations to match or modify the objects, the system will omit these regulations.

If there is no name behind the **no route map** command, the whole route map will be deleted, or the designated item will be deleted.

Example

The following example shows the route map is used to filter the routes forwarded by OSPF and to set the relative

attributes.

router bgp 20

redistribute ospf 3 route-map redist-ospf

route-map redist-ospf

match tag 139009

set local-preference 300

Related command

match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.2 match as-path

Syntax

To set a **match** regulation of the route map and check the attributes of the BGP route through the AS-path map, run **match as-path**. To delete the configuration you have just done, run **no match as-path**. **match as-path** <as-path-list-name>
no match as-path <as-path-list-name>

Parameter

Description

as-path-list-name

Name of the as-path list

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

The designated AS path list is used to match the object or to filter the AS-PATH attribute of the BGP route.

Example

The following example shows how to check the whether the BGP route is matched using **as-list1**.

route-map match-aspath

match as-path as-list1

Related command

route-map match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.3 match community

Syntax

To set a **match** regulation of the route map and check the attributes of the BGP route through the community list, run **match community**. To delete the configuration you have just done, run **no match community**. **match community**-*list-name*>

no match community <community-list-name>

Parameter

Parameter	Description
community-list-name	Name of the community list

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

The designated community list is used to match the object and to filter the community attribute of the BGP route.

Example

The following example shows how to check the whether the BGP route is matched using as-list1.

route-map match-comm

match community comm-list1

Related command

route-map match as-path match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.4 match ip address

Syntax

To set a route-map **match** regulation and match the destination network's address, run **match ip address**. To delete the configuration you have just done, run **no match ip address**. **match ip address** <*name*> **no match ip address** <*name*>

Parameter

Parameter	Description
name	Name of the IP access list

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

The access list is used to filter the network address of the route, which is suitable for all IP routes and packets.

Example

In the following example, the route checked by the access list is set to metric.

route-map set-metric

match ip address acl-metric

set metric 100

Related command

route-map match as-path match community-list match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.5 match ip next-hop

Syntax

To set a route-map **match** regulation and check whether the next hop address of the route matches with the address of the designated next hop, run **match ip next-hop** *<a.b.c.d>*. To delete the configuration you have just done, run **no match ip next-hop** *<a.b.c.d>*.

match ip next-hop <a.b.c.d>

no match ip next-hop <*a.b.c.d*>

Parameter

Parameter	Description
a.b.c.d	IP address

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

The access list is used to check the attribute of the next hop, which is suitable for all IP routes.

Example

In the following example, the route with the next hop's address 192.121.13.28 matches item 20 of the route map. route-map beijing 10 permit match ip nexthop 172.12.29.98 set metric 100 route-map beijing 20 permit match ip nexthop 192.121.13.28 set metric 20

Related command

route-map match as-path match community-list match ip address match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.6 match ip address prefix-list

Syntax

To set a route-map **match** regulation and match the destination network's address, run **match ip address prefix list**. To delete the configuration you have just done, run **no match ip address prefix-list**.

match ip address prefix-list <name>

no match ip address prefix-list <name>

Parameter

Parameter	Description
name	Name of the prefix list

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to all IP routes.

Example

The following example shows that the route whose destination address is 192.121.0.0 matches route-map match-prefix.

ip prefix-list beijing permit 192.121.0.0/16

route-map match-prefix

match ip address prefix-list beijing

set metric 100

Related command

route-map match as-path match community-list match ip address match ip next-hop match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.7 match length

Syntax

To set a route-map **match** regulation and check whether the route's metric matches the address of the designated metric, run **match length**. To delete the configuration you have just done, run **no match length**. **match length** <*maximum-length*> **match length** <*maximum-length*> **no match length** <*maximum-length*>

Parameter

Parameter	Description
minimum-length	Minimum length of the packet
maximum-length	Maximum length of the packet

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to the strategy route.

Related command

route-map

33.7.4.8 match metric

Syntax

To set a route-map **match** regulation and check whether the route's metric matches the address of the designated metric, run **match metric** <*value*>. To delete the configuration you have just done, run **no match metric** <*value*>. **match metric** <*value*> **no match metric** <*value*>

Parameter

Parameter	Description
value	Metric value

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to all routes.

Example

The following example shows that the routes whose metric values are 120 are declined because they match item 20 of the route map.

route-map beijing 10 permit

match ip nexthop 172.12.29.98

set metric 100

route-map beijing 20 deny

match metric 120

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.9 match tag

Syntax

To set a route-map **match** regulation and check whether the route's tag matches the designated tag, run **match** tag <*value*>. To delete the configuration you have just done, run **no match** tag <*value*>. **match** tag <*value*> **no match** tag <*value*>

Parameter

Parameter	Description
value	Value of the Tag

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to all routes.

Example

The following example shows that the routes whose tags' values are 120923 are declined because they match item 20 of the route map.

route-map huang 10 permit

match ip nexthop 172.12.29.98

set metric 100

route-map huang 20 deny

match tag 120923

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.10 on-match

Syntax

To configure the exit strategy of the route-map item, run **on-match**. To cancel the configuration, run **no on-match**. **on-match** {**next** | **goto** *n*} **no on-match** {**next** | **goto** }

Parameter

Parameter	Description
n	Sequence of the item

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

The command is used to configure the exit strategy of the route-map item. If a route-map item is successfully matched and the item have not configured with the exit strategy, the checking to other items will be stopped and the attribute of the item (deny/permit) will be returned. If **on-match next** is configured, the checking on the next item will be continued. If **on-match goto N** is configured, the designated item, item N, will be the first one to be checked; if the designated item does not exist, the attribute of the item (deny/permit) will be returned.

Example

None

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag

set weight show route-map

33.7.4.11 set aggregator

Syntax

To configure a route-map setting regulation and set the BGP route to **aggregator**, run **set aggregator**. To delete the configuration you have just done, run **no set aggregator**.

set aggregator as <as-number> <a.b.c.d>

no set aggregator as <as-number> <a.b.c.d>

Parameter

Parameter	Description
as-number	Number of the autonomous system of the route aggregator
a.b.c.d	IP address of the route aggregator

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route.

Example

The following example shows that all routes are set to **aggregator**.

route-map huang

set aggregator as 200 192.12.90.82

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.12 set as-path

Syntax

To configure a route-map setting regulation and add AS before the **as-path** attribute of the BGP route, run **set as-path prepend**. To delete the configuration you have just done, run **no set as-path prepend**. **set as-path prepend** <*as*>

no set as-path prepend <as>

Parameter

Parameter	Description
prepend	Means that AS is added before the as-path attribute.
as	Number of the autonomous system

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route.

Example

In the following example, the length of the **as-path** attribute is added by adding the autonomous system number before the **as-path** attribute for each route and the result of routing choice is herein changed.

route-map add-as

set as-path prepend 200 200 200 200

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.13 set atomic-aggregate

Syntax

To configure a route-map setting regulation and set the BGP route to **aggregator**, run **set atomic-aggregate**. To delete the configuration you have just done, run **no set atomic-aggregate**.

set atomic-aggregate

no set atomic-aggregate

Parameter

None

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route. If the aggregation of information loss is generated when a system transmits the route, you need set the route to **atomic-aggregate**.

Example

In the following example, the length of the **as-path** attribute is added by adding the autonomous system number before the **as-path** attribute for each route and the result of routing choice is herein changed.

route-map tee

set atomic-aggregate

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.14 set community

Syntax

To configure a route-map setting regulation and set the BGP route to **community**, run **set community**. To delete the configuration you have just done, run **no set community**.

set community <aa:nn | 1-4294967295 | local-AS | no-advertise | no-export>

no set community <aa:nn | 1-4294967295 | local-AS | no-advertise | no-export>

Parameter

Parameter	Description
aa:nn	Format of the community value
1-4294967295	Value range of the community parameter
no-advertise	Means that any neighbor will not be reported.
local-AS	Means that the EBGP neighbor outside of the local autonomous system or in the same autonomous system ally will not be reported.
no-export	Means that the neighbors in the local autonomous system or the autonomous system ally will not be reported.

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route. The newly-set community attribute will replace the previous community attribute of the route.

Example

In the following example, all routes from neighbor 193.12.202.12 will be set to **local-AS community**, enabling these routes not to be reported to other autonomous systems.

router bgp 200

neighbor 193.12.202.12 remote 100

neighbor 193.12.202.12 route-map tee in

route-map tee

set community local-AS

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.15 set community-additive

Syntax

To configure a route-map setting regulation and add a value to the community attribute of the BGP route, run **set community-additive**. To delete the configuration you have just done, run **no set community-additive** <*aa:nn* / 1-4294967295 | **local-AS** | **no-advertise** | **no-export**>.

set community-additive <aa:nn | 1-4294967295 | local-AS | no-advertise | no-export> no set community-additive <aa:nn | 1-4294967295 | local-AS | no-advertise | no-export>

Parameter

Parameter	Description
aa:nn	Format of the community value
1-4294967295	Value of the community parameter

no-advertise	Means that any neighbor will not be reported.
local-AS	Means that the EBGP neighbor outside of the local autonomous system or in the same autonomous system ally will not be reported.
no-export	Means that the neighbors in the local autonomous system or the autonomous system ally will not be reported.

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route. The newly-set community attribute will be added to the previous community attribute of the route.

Example

In the following example, all routes from neighbor 193.12.202.12 will be set to **local-AS community**, enabling these routes not to be reported to other autonomous systems.

router bgp 200

neighbor 193.12.202.12 remote 100

neighbor 193.12.202.12 route-map tee in

route-map tee

set community-additive local-AS

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.16 set default

Syntax

To set the default information for the strategy route, run **set default interface**. To cancel the configuration, run **no set default interface**.

set default interface <interface-name> [load-balance]
no set default interface <interface-name> [load-balance]

Parameter

Parameter	Description
interface-name	Name of the designated interface
load-balance	Allow port routing balance

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to the strategy route. The default outgoing interface of the strategy route is configured through the command. Only when the interface is in the **use** state can this command validate. The interface must meet two conditions before it is used.

Firstly: The UP protocol is running on the interface.

Second: The interface has the IP address or the negotiation IP address, or the interface is the NULL interface.

Related command

route-map

33.7.4.17 set interface

Syntax

To set the outgoing interface for the strategy route, run set interface. To cancel the configuration, run no set interface.

set interface <interface-name> [load-balance]
no set interface <interface-name> [load-balance]

Parameter

Parameter	Description
interface-name	Name of the designated interface
load-balance	Allow port routing balance

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to the strategy route. The default outgoing interface of the strategy route is configured through the command. Only when the interface is in the **use** state can this command validate. The interface must satisfy two conditions before it is used.

Firstly: The UP protocol is running on the interface.

Secondly: The interface has the IP address or the negotiation IP address, or the interface is the NULL interface.

Related command

route-map

33.7.4.18 set ip default

Syntax

To set the default next hop for the strategy route, run **set ip default nexthop**. To cancel the configuration, run **no set ip default nexthop**.

set ip default nexthop <A.B.C.D> [load-balance]

no set ip default nexthop <A.B.C.D> [load-balance]

Parameter

Parameter	Description
A.B.C.D	Gateway's address
load-balance	Allow route balancing for next hop

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to the strategy route. Only when the next hop arrives can this command be valid.

Example

None

Related command

route-map

33.7.4.19 set ip precedence

Syntax

To set the precedence for the strategy route, run **set ip precedence <0-7>**. To cancel the configuration, run **no set ip precedence <0-7>**. **set ip precedence <0-7> no set ip precedence <0-7>**

Parameter

Parameter	Description
0-7	Precedence which is set for the packet

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to the strategy route. When the suitable route is found by the strategy route for routing, the precedence can also be set. If the strategy route fails, the precedence cannot be set. The precedence of the IP packet is defined as follows:

routine 0 priority 1 immediate 2 flash 3 flash-override 4 critical 5 internet 6 network 7

Related command

route-map

33.7.4.20 set ip tos

Syntax

To set the tos for the strategy route, run **set ip tos**. To cancel the configuration, run **no set ip tos**. **set ip tos** <0-15>

no set ip tos <0-15>

Parameter

Parameter	Description
0-15	TOS which is set for the packet

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to the strategy route. When the suitable route is found by the strategy route for routing, TOS can also be set. If the strategy route fails, the TOS cannot be set. Different TOS' can be set according to their order or can be set together:

normal		0
min-monestary		1
max-reliability	2	
max-throughput		4
min-delay		8

Related command

route-map

33.7.4.21 set ip next-hop

Syntax

To configure a route-map setting regulation and set the next-hop address of the route, run **set ip next-hop**. To delete the configuration you have just done, run **no set ip next-hop**. **set ip next-hop** <*a.b.c.d*> [load-balance] **no set ip next-hop** <*a.b.c.d*> [load-balance]

Parameter

Parameter	Description
a.b.c.d	IP address
load-balance	Set port load balancing

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to all IP routes.

Example

In the following example, the next-hop addresses of all routes from neighbor 193.12.202.12 are set to 193.12.202.1:

router bgp 200

neighbor 193.12.202.12 remote 100

neighbor 193.12.202.12 route-map tee in

route-map tee

set ip next-hop 193.12.202.1

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set local-preference set metric set origin set tag set weight show route-map

33.7.4.22 set local-preference

Syntax

To configure a route-map setting regulation and set the local preference of the BGP route, run **set local-preference**. To delete the configuration you have just done, run **no set local-preference**. **set local-preference** <*value*>

no set local-preference <value>

Parameter

Paran	neter	Description
value		Value of the local preference

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route.

Example

The following example shows that the route map can set **local-preference** to 200:

route-map set-local-pref

set local-preference 200

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set metric set origin set tag

set weight show route-map

33.7.4.23 set metric

Syntax

To configure a route-map setting regulation and set the metric of the route, run **set metric**. To delete the configuration you have just done, run **no set metric**. **set metric** <*value*> [*BEIGRP-delay reliability loading MTU*] **no set metric** <*value*> [*BEIGRP-delay reliability loading MTU*]

Parameter

Parameter	Description
value	Value of the metric
BEIGRP-delay	BEIGRP port delay (unit: 10ms). Range is from 0 to 4294967295.
reliability	BEIGRP port reliability (255 means completely reliable). Range is from 0 to 255.
loading	BEIGRP load parameters (255 represents full load). Range is from 0 to 255.
MTU	BEIGRP port MTU. Range is from 0 to 4294967295.

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to all IP routes.

Example

The following example shows that the route map can set **metric** to 120:

route-map set-metric

set metric 120

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set origin set tag set weight show route-map

33.7.4.24 set metric-type

Syntax

To set the value of the metric-type parameter for supporting the external type OSPF route, run **set metric-type**. To delete the configuration you have just done, run **no set metric-type**.

set metric-type [type-1 | type-2]

no set metric-type [type-1 | type-2]

Parameter

Parameter	Description
Туре-1	External type-1 of OSPF metric
Туре-2	External type-2 of OSPF metric

Default value

None

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to external OSPF routes.

Example

The following example shows that the route map can set **metric-type** to **type1**:

route-map set-metric-type

set metric-type type-1

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight show route-map

33.7.4.25 set origin

Syntax

To set the origin attribute of the BGP route, run **set origin**. To delete the configuration you have just done, run **no set origin**.

set origin {igp | egp | incomplete}
no set origin {igp | egp | incomplete}

Parameter

Parameter	Description
igp	Internal route of the autonomous system
egp	External route of the autonomous system
incomplete	Uncertain route

Default value

Igp is he default route locally configured through the **network** command, **Incomplete** is the default route locally configured through the **aggregate** command or the **redistribute** command.

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route.

Example

The following example shows how the defined route map sets the BGP route with a 10-starting **original** attribute to **igp**.

ip as-path-list self permit ^10

route-map set-origin

match as-path self

set origin igp

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set tag set weight show route-map

33.7.4.26 set tag

Syntax

To set the tag of the route, run **set tag**. To delete the configuration you have just done, run **no set tag**. **set tag** <*value*> **no set tag** <*value*>

Parameter

Parameter	Description
value	Value of the tag

Default value

The default tag value is 0.

Command mode

Route-map configuration mode

Usage guidelines

This command is suitable to all IP routes.

Example

The following example shows how to set **tag** to 120980 through the route map:

route-map set-tag

set tag 120980

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set weight show route-map

33.7.4.27 set weight

Syntax

To set the weight of the BGP route, run **set weight**. To delete the configuration you have just done, run **no set weight**.

set weight <value>

no set weight <value>

Parameter

Parameter	Description	
value	Value of the weight	

Default value

The default weight value of the locally-generated BGP route is 32768 and the weight value obtained from the neighbor is 0.

Command mode

Route-map configuration mode

Usage guidelines

This command is only suitable to the BGP route.

Example

The following example shows how to set the weight to 230 through the route map:

route-map set-weight

set weight 230

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag show route-map

33.7.4.28 show route-map

Syntax

To display the information about the route map, run the following command: **show route-map** [*name*]

Parameter

Parameter	Description
name	Name of the route map

Default value

None

Command mode

EXEC

Usage guidelines

If the name of the route map is not designated, all configured route maps in the system will be displayed.

Example

The following example shows that all route maps in the system are displayed:

Show route-map

Related command

route-map match as-path match community-list match ip address match ip next-hop match ip prefix-list match metric match tag on-match set aggregator set as-path set atomic-aggregate set community set community-additive set ip next-hop set local-preference set metric set origin set tag set weight

33.8 PBR Configuration Commands

33.8.1 PBR Configuration Commands

HTTP configuration commands include:

- debug ip policy
- ip policy route-map
- match ip address
- match length
- set default interface
- set interface
- set ip default next-hop
- set ip next-hop
- route-map
- Debug ip policy
- ip local policy
- ip policy
- ip route-weight
- show ip local policy
- show ip policy

33.8.1.1 debug ip policy

Syntax

To check the results of applying the policy route, run **debug ip policy**. To return to the default setting, use the no form of this command.

debug ip policy

no debug ip policy

Parameter

None

Default value

By default, the results of policy route application will not be printed.

Command mode

EXEC

Usage guidelines

This command can be used to check whether the IP packets received from the interface have been applied with the policy route.

Because the results of policy routing application for each interface-received IP packet will be printed after this command is run, please use this command when the network traffic is low.

Example

The following example shows how to display the policy routing debug information

Router# debug ip policy

2004-1-16 15:32:54 PBR: s=10.1.1.2 (vlan1), d=99.1.1.1, len 84, policy rejected -- normal forwarding

2004-1-16 15:32:54 PBR: s=10.1.1.21 (vlan1), d=99.1.1.1 (vlan2), len= 84, gate=13.1.1.99 policy routed

Related command

None

33.8.1.2 ip policy route-map

Syntax

To apply the policy route to the interface-received IP packet, run **ip policy route-map route-map name** in interface configuration mode. To cancel the policy route on the interface, run **no ip policy route-map**. **ip policy route-map** *route-map name* **no ip policy route-map**

Parameter

Parameter	Description
route-map name	Name of the route map

Default value

None

Command mode

Interface configuration mode

Usage guidelines

If you want to apply the policy route to the interface-received IP packet, you need to run the **ip policy route-map** command.

Example

The following example shows how to enable the policy route on interface vlan1.

Switch _config#int vlan1

Switch _config_v1#ip policy route-map pbr

Related command

route-map

33.8.1.3 match ip address

Syntax

To apply the matchup policy based on source IP address, run **match ip address** *access-list name*. **match ip address** *access-list name* **no match ip address** [*access-list name*]

Parameter

Parameter	Description
access-list name	Name of the standard IP access control list

Default value

The access list is not designated by default.

Command mode

Route-map configuration mode

Usage guidelines

If the route map is applied to the policy route, the source address of the IP packet will be used to match the configured access list. If the source address does match the access list, the **set** regulation is then applied; otherwise, the next sequence number of the same route map will be used.

Example

The following example shows that the packets whose source IP addresses are allowed by access list **net1** will be transmitted to interface vlan2:

Interface vlan1

ip policy route-map moon

ļ

route-map moon

match ip address net1

set interface vlan2

Related command

set default interface set interface set ip default next-hop set ip next-hop

route-map

33.8.1.4 match length

Syntax

To set the route policy according to the length of the IP packet, run **match length**. **match length** *minimum-length maximum-length* **no match length** *minimum-length maximum-length*

Parameter

Parameter	Description
minimum-length	Designates the minimum length of the matched packet.
maximum-length	Designates the maximum length of the matched packet.

Default value

It is not configured by default.

Command mode

Route-map configuration mode

Usage guidelines

This command is used to conduct the policy routing according to the size of the IP packet.

Example

The following example shows that the IP packet whose size ranges between 1000 bytes to 1500 bytes will be

transmitted to interface vlan2. Interface vlan1 ip policy route-map moon ! route-map moon match length 1000 1500 set interface vlan2

Related command

match ip address set default interface set interface set ip default next-hop set ip next-hop route-map

33.8.1.5 set default interface

Syntax

To set the default next-hop interface for the matched IP packet, run **set default interface**. **set default interface** *interface name* [*...interface name*] [**load-balance**] **no set default interface** *interface name* [*...interface name*] [**load-balance**]

Parameter

Parameter	Description
interface name	Name of the interface

Default value

It is not configured by default.

Command mode

Route-map configuration mode

Usage guidelines

Before you set the default next-hop interface for the matched IP packet through the set default interface command, the following conditions must be satisfied:

- 1. The **set ip next-hop** command is not configured, or the **set ip next-hop** command is configured but the route of the next hop designated by **set ip next-hop** is not in the routing table.
- 2. If the **set interface** command is not configured or the **set interface** command is configure but these interfaces cannot be routed (the interface is down or there is no IP address).
- 3. The **set ip default next-hop** command or the **set ip default next-hop** command is not configured but the route of the next hop designated by **set ip default next-hop** is not in the routing table.

Example

None

Related command

match ip address match length set interface set ip default next-hop set ip next-hop route-map

33.8.1.6 set interface

Syntax

To set the next-hop interface for the matched IP packet, run **set interface**. **set interface interface name** [...interface name] [load-balance] **no set interface interface name** [...interface name] [load-balance]

Parameter

Parameter	Description	
interface name	Name of the interface	Default value

It is not configured by default.

Command mode

Route-map configuration mode

Usage guidelines

Before you set the next-hop interface for the matched IP packet through the set interface command, the following conditions must be satisfied:

- 1. The **set ip next-hop** command or the **set ip next-hop** command is not configured, and the route of the next hop designated by **set ip next-hop** is not in the routing table.
- 2. The interface is in the routing state (the protocol on the interface is up and the IP address exists).

Example

None

Related command

match ip address

match length

set default interface set ip default next-hop

set ip next-hop

route-map

33.8.1.7 set ip default next-hop

Syntax

To set the default next-hop for the matched IP packet, run **set ip default next-hop**. **set ip default next-hop** *A.B.C.D* [...*A.B.C.D*] [Load-balance] **no set ip default next-hop** *A.B.C.D* [...*A.B.C.D*] [Load-balance]

Parameter

Parameter	Description
A.B.C.D	Address of the next hop

Default value

It is not configured by default.

Command mode

Route-map configuration mode

Usage guidelines

Before you set the default next hop for the matched IP packet through the **set ip default next-hop** command, the following conditions must be satisfied.

1. The **set ip next-hop** command or the **set ip next-hop** command is not configured, and the route of the next hop designated by **set ip next-hop** is not in the routing table.

- 2. If the **set interface** command is not configured or the **set interface** command is configure but these interfaces cannot be routed (the interface is down or there is no IP address).
- 3. The route of the next hop designated by the **set ip default next-hop** command exists in the routing table.

Related command

set default interface set interface set ip next-hop

route-map

33.8.1.8 set ip next-hop

Syntax

To set the next hop for the matched IP packet, run **set ip next-hop**. **set ip next-hop** *A.B.C.D* [...*A.B.C.D*] [Load-balance] **no set ip next-hop** *A.B.C.D* [...*A.B.C.D*] [Load-balance]

Parameter

Parameter	Description
A.B.C.D	Address of the next hop

Default value

It is not configured by default.

Command mode

Route-map configuration mode

Usage guidelines

Before you set the next hop for the matched IP packet through the **set ip next-hop** command, the following conditions must be satisfied:

The route of the next hop designated by the **set ip next-hop** command exists in the routing table.

Related command

set default interface set interface set ip default next-hop set ip next-hop

route-map

33.8.1.9 route-map

Syntax

route-map route-map name [sequence-number] [permit | deny]
no route-map route-map name [sequence-number] [permit | deny]

Parameter

Parameter	Description
route-map name	Name of the route map
sequence-number	Sequence number of the designated route map, which is optional
permit	Means that the route or the policy route is allowed to be forwarded if the IP packet is matched. The parameter is optional.
deny	Means that the route or the policy route is forbidden to be forwarded if the IP packet is matched. The parameter is optional.

Default value

There is no static routes by default.

Command mode

Global configuration mode

Usage guidelines

The **route-map** command is used to configure the route map.

Example

The following example shows that route map **pbr** is configured. route-map pbr 10 permit match ip address net1 set ip next-hop 13.1.1.99 ! route-map pbr 20 permit set ip next-hop 14.1.1.99

ļ

route-map pbr 30 permit

match ip address net3

set ip next-hop 13.1.1.99 14.1.1.99 load-balance

Related command

match ip address match length set default interface set interface set ip default next-hop set ip next-hop

33.8.1.10 ip local policy

Syntax

To open the policy route of the local packet, run **ip local policy route-map** [*name*]. To shut down the policy route of the local packet, run **no ip local policy route-map** [*name*].

ip local policy route-map name

no ip local policy route-map name

Parameter

Parameter	Description
name	Name of the route map used by the policy route

Default value

The policy routing function of the local packet is shut down by default.

Command mode

Global configuration mode

Usage guidelines

The policy route can be applied to the locally-transmitted packets or the forwarded packets. The route applied to the locally-transmitted packets are called as the local policy route. After the **ip local policy route-map** <*name*> command and a proper route map are configured in global configuration mode, you can apply the policy route to the locally-transmitted packets.

The policy route checks whether the packets are the broadcast packets, and the broadcast packets also checks the corresponding policy route. Among the results of the policy route, only an outgoing interface or a next hop is shown. The route-to-multiport condition does not exist.

The route map which is used for the policy route can match the packet according to the access list or the packet's length. The policy routing is conducted by setting the next hop or the outgoing interface. Various policies can be satisfied using the access list according to the routes, such as the route of the source address and the application route.

The policy route can be used to set the outgoing interface, next hop, TOS and precedence of the packet. The order to choose the policy route is as follows: nexthop, default nexthop, interface and default interface. The normal route can be adopted when all the four types of previous policy routes are unavailable.

If **nexthop** is available, it means that a route can be found in the routing table for **nexthop**. If **interface** is available, it means that the IP protocol on the interface is up and the legal IP address exists.

Example

The following example shows that the policy routing is conducted to the locally-transmitted packets. The packets from the network whose destination address is 100.0.0/8 will be transmitted to interface vlan1:

ip local policy route-map Policy

```
ļ
```

route-map Policy

match ip address Policy-ACL

set interface vlan1

i

ip access-list extended Policy-ACL

permit ip any 100.0.0.0 255.0.0.0

ļ

Related command

ip policy show ip local policy show ip policy

33.8.1.11 ip policy

Syntax

To open the policy route on an interface, run **ip policy route-map** [*name*]. To shut down the local policy route, run no **ip policy route-map** [*name*]. **ip policy route-map** *name* **no ip policy route-map**

Parameter

Parameter	Description
name	Name of the route map used by the policy route

Default value

The policy routing function on an interface is shut down by default.

Command mode

Port configuration mode

Usage guidelines

The policy route can be applied to the locally-transmitted packets or the forwarded packets

The policy route is to check whether the packet is the broadcast packet, while the broadcast packet is also to check the corresponding policy route.

The route map which is used to match the policy route can match the packet according d to the access list or the packet's length. Various policy requirements can be satisfied through the usage of the access list, such as source-address-based routing and application-based routing.

You can set the egress port, nexthop, tos and precedence for the policy route. When the policy route is used, the order to select the route is: set ip nexthop, set interface,non-default normal route, set ip default nexthop, set default interface, normal route or default route. The policy route can set tos and precedence uniquely for normal routes.

The availability of nexthop means that the nexthop can be used to find a route in the routing table. The interface availability means that the IP protocol on the interface is up and the interface has a legal IP address.

Example

The following example shows that the policy routing can be conducted to a packet received by interface vlan1 and the packet whose destination address is 100.0.0/8 can be transmitted to interface vlan2:

interface vlan1

ip policy route-map Policy

i

route-map Policy

match ip address Policy-ACL

set interface vlan2

ļ

ip access-list extended Policy-ACL

permit ip any 100.0.0.0 255.0.0.0

ļ

Related command

ip local policy show ip local policy show ip policy

33.8.1.12 ip route-weight

Syntax

To configure the route weight on an interface, run **ip route-weight**. To resume the original route weight on an interface, run **no route-weight**. The original value of the route weight is 1.

ip route-weight [value]

no ip route-weight

Parameter

Parameter	Description
value	Route weight

Default value

The default value of the route weight is 1.

Command mode

Port configuration mode

Usage guidelines

You can configure the **ip route-weight** command on an interface to realize rate-based flow distribution. At first, you need to configure the **ip route load-balance** command in global mode; then, you need to configure the route weight at the egress port of the equivalence route according to the flow distribution rate. In this way, the packet can be transmitted on different egress ports of the equivalence route according to the configured rate. In this case, you must disable the ip cache function.

Example

The following example shows that the packet is transmitted at a rate of 3:2 on interface vlan1 and interface vlan2 after it arrives destination network 5.0.0.0.

Interface vlan1

ip route-weight 3

ip address 3.0.0.1 255.0.0.0

no ip directed-broadcast

ļ

interface vlan2

ip route-weight 2

ip address 8.0.0.1 255.0.0.0

no ip directed-broadcast

duplex half

ļ

ip route load-balance

ip route 5.0.0.0 255.0.0.0 FastEthernet0/0 1.2.3.5 2

```
ip route 5.0.0.0 255.0.0.0 Ethernet1/1 2.2.3.5 2
```

The route weight of interface vlan1 is set to 3, while the route weight of interface vlan2 is set to 2. If they are configured as 6 and 4 respectively, they will have the same effect. Their greatest common divisor is eliminated here

Related command

ip route load-balance ip route-cache

33.8.1.13 show ip local policy

Syntax

show ip policy

Parameter

None

Default value

None

Command mode

EXEC mode

Usage guidelines

show ip local policy

The command is used to how to show the configuration status of local policy routing.

Example

None

Related command

ip local policy ip policy show ip policy

33.8.1.14 show ip policy

Syntax

show ip policy

Parameter

None

Default value

None

Command mode

EXEC mode

Usage guidelines

The **show ip policy** command is used to display the configuration state of the policy route.

Example

None

Related command

ip local policy ip policy show ip local policy

33.9 Switch Routing Protocol Highpriority Configuration Commands

33.9.1 Switch Routing Protocol Highpriority Configuration Commands

Switch routing protocol highpriority configuration commands include:

switch routing-protocol-highpriority

33.9.1.1 switch routing-protocol-highpriority

Syntax

To enable or disable set priority of the routing packets forwarding to CPU, run the following command. To return to the default setting, use the no form of this command. [no] switch routing-protocol-highpriority

Parameter

None

Default value

Disabled

Command mode

Global configuration mode

Usage guidelines

None

Example

The following example shows how to set priority of the routing packets forwarding to CPU.

Switch _config# switch routing-protocol-highpriority

Switch _config#

34 IPv6 Configuration Commands

34.1 IPv6 Configuration Commands

34.1.1 IPv6 Commands

IPv6 configuration commands include the following ones:

- (1) ipv6 address
- (2) ipv6 address anycast
- (3) ipv6 address autoconfig
- (4) ipv6 address eui-64
- (5) ipv6 address link-local
- (6) ipv6 enable
- (7) show ipv6 interface

34.1.1.1 ipv6 address

Syntax

To set an IPv6 address in port configuration mode and meanwhile enable IPv6 on a port, run **ipv6 address** command. To delete the IPv6 address on a port, run **no ipv6 address** command.

ipv6 address { *ipv6-address/prefix-length* | **general-prefix** *prefix-name sub-bits/prefix-length* } **no ipv6** address [*ipv6-address/prefix-length* | **general-prefix** *prefix-name sub-bits/prefix-length*]

Parameter

Parameter	Description
ipv6-address	Means the to-be-added IPv6 address.
/prefix-length	Means the IPv6 prefix' length. It is a decimal value behind the symbol "/", meaning the successive bits in the network part in an address.
Prefix-name	Means a general prefix, defining the network part of the IPv6 address.
Sub-bits	Means the host part of the IPv6 address. It combines with the prefix, which is defined by prefix-name, to form an IPv6 address. This parameter must support the IPv6 address format regulated in REC2373.

Default

No default IPv6 address exists on the VLAN port.

Command Mode

VLAN Interface configuration mode

Usage Guidelines

If you run **no ipv6 address**, which has no parameters, all manually configured IPv6 addresses on the VLAN port will be deleted.

Example

The following example shows how to set an IPv6 address in VLAN port configuration mode and meanwhile enable IPv6 on the VLAN port.

Switch_config_v1# ipv6 address 2001:0:0:0DB8:800:200C:417A/64

Related Commands

ipv6 address anycast

ipv6 address eui-64

ipv6 address link-local

show ipv6 interface

34.1.1.2 ipv6 address anycast

Syntax

To set an anycast address and enable IPv6 on the VLAN port, run the first one of the following two commands:

ipv6 address ipv6-prefix/prefix-length anycast no ipv6 address [ipv6-prefix/prefix-length anycast]

Parameter

Parameter	Description
lpv6-prefix	Means the network part of the IPv6 address.
/prefix-length	Means the IPv6 prefix length. It is a decimal value behind the symbol "/",
	meaning the successive bits in the network part in an address.

Default

It is set as an anycast address on the VLAN port by default.

Command Mode

VLAN Interface configuration mode

Usage Guidelines

If you run **no ipv6 address**, which has no parameters, all manually configured IPv6 addresses on the VLAN port will be deleted.

Example

Switch_config_v1# ipv6 address 2001:0DB8:1:1:FFFF:FFFF:FFFF:FFFE/64 anycast

Related Commands

ipv6 address eui-64 ipv6 address link-local show ipv6 interface

34.1.1.3 ipv6 address autoconfig

Syntax

To use the stateless auto-configuration protocol to set an IPv6 address, run **ipv6 address autoconfig** in VLAN port configuration mode. **Ipv6 address autoconfig no ipv6 address autoconfig**

Parameter

None

Default

By default, IPv6 address auto-configuration is not used.

Command Mode

VLAN Interface configuration mode

Example

Switch_config_v1# ipv6 address autoconfig

34.1.1.4 ipv6 address eui-64

Syntax

To set an IPv6 address in VLAN port configuration mode, run **ipv6 address eui-64**. To remove the setting, use the no form of the command. **ipv6 address ipv6-prefix/prefix-length eui-64**

no ipv6 address [ipv6-prefix/prefix-length eui-64]

Parameter

Parameter	Description
lpv6-prefix	Means the network part of the IPv6 address.
/prefix-length	Means the IPv6 prefix length. It is a decimal value behind the symbol "/",
	meaning the successive bits in the network part in an address.

Default

The IPv6 address in the eui-64 form is not configured on the VLAN port.

Command Mode

VLAN Interface configuration mode

Usage Guidelines

If you run **no ipv6 address**, which has no parameters, all manually configured IPv6 addresses on the VLAN port will be deleted.

If the **prefix-length** parameter is bigger than 64 bits, the prefix-length is prior to the length of the VLAN port ID.

Example

Switch_config_v1# ipv6 address 2001:0:0:0DB8::/64 eui-64

Related Commands

ipv6 address link-local show ipv6 interface

34.1.1.5 ipv6 address link-local

Syntax

To set a link-local address in VLAN port configuration mode and meanwhile enable IPv6 on the VLAN port, run the first one of the following two commands:

ipv6 address *ipv6-address* link-local no ipv6 address [*ipv6-address* link-local]

Parameter

Parameter	Description
ipv6-address	Means the to-be-added IPv6 address. The format of this address must abide by the definition in RFC 4291 strictly.
link-local	Means a link-local address. The link-local address designated by the ipv6-address command will automatically replace the automatically configured link-local address.

Default

No default IPv6 link-local address exists on the VLAN port.

Command Mode

Interface configuration mode

Usage Guidelines

If you run **no ipv6 address**, which has no parameters, all manually configured IPv6 addresses on the VLAN port will be deleted. If you run **ipv6 enable**, a link-local address will be automatically set. Of course you can set the link-local address manually, the command you will use is **ipv6 address link-local**.

Example

The following example shows how to set a link-local address manually on the VLAN port: Switch_config_v1# ipv6 address FE80::A00:3EFF:FE12:3457 link-local

Related Commands

ipv6 address eui-64 show ipv6 interface

34.1.1.6 ipv6 enable

Syntax

If the IPv6 address is not set on the VLAN port but users want to enable the IPv6 protocol on this port, run **ipv6 enable**. **ipv6 enable no ipv6 enable**

Parameter

None

Default

The IPv6 protocol is forbidden on the VLAN port.

Command Mode

VLAN Interface configuration mode

Usage Guidelines

After the **ipv6 enable** command is run, the system will add a link-local address on the VLAN port automatically. At the same time, the communication range of the IPv6 protocol on the VLAN port is confined to the links that the VLAN port connects. If the IPv6 address has already configured on the VLAN port explicitly, you cannot forbid IPv6 processing on the VLAN port even though you use the **no ipv6 enable** command.

Example

Switch_config# interface vlan 1

Switch_config_v1# ipv6 enable

Related Commands

ipv6 address link-local ipv6 address eui-64 show ipv6 interface

34.1.1.7 show ipv6 interface

Syntax

To show the information about the VLAN port on which the IPv6 protocol is enabled, run the following command:

show ipv6 interface [interface-type interface-number] | [brief]

Parameter

Parameter	Description
interface-type	Stands for the type of the VLAN port.
interface-number	Stands for the ID of the VLAN port.

Default

Those VLAN ports on which the IPv6 protocol is enabled will all be displayed.

Command Mode

Global configuration mode

Usage Guidelines

This command can be used to display the state of IPv6 on the VLAN port, the configured IPv6 address and other IPv6 related parameters.

Example

The following example shows how to display the IPv6 state on port vlan1:

Switch# show ipv6 interface vlan 1

Vlan1 is up, line protocol is down

IPv6 is enabled, link-local address is FE80::A00:3EFF:FE12:3457 [TENTATIVE]

Global unicast address(es):

5678::111, subnet is 5678::/64 [TENTATIVE]

Joined group address(es):

FF02::1

FF02::2

FF02::1:FF12:3457

FF02::1:FF00:111

MTU is 1500 bytes

ICMP error messages limited to one every 100 milliseconds

ICMP redirects are enabled

ICMP unreachables are enabled

Field	Description
Vlan1 is	Indicates whether the physical layer of the VLAN port is accessible
up(down/administratively	or whether it can be shut down manageably.
line protocol is up(down)	Indicates whether the line protocol (the software layer) is accessible.
IPv6 is enabled	Enables the IPv6 protocol.
link-local address	Displays the link-local address of a port.
Global unicast	Displays the unicast address of a port.

Joined group	Displays the multicast address of a port.
MTU	Displays the MTU of a port.
ICMP error messages	Displays the transmission frequency of ICMPv6 error packets (the
ICMP redirects	Displays whether the redirection packet will be sent or not.
ICMP unreachables	Displays whether the destination unreachable packet will be enabled

Related Command

None

34.2 Chapter 2 IPv6 Configuration Commands

34.2.1 IPv6 Configuration Commands

IPv6 configuration commands include the following ones:

- (8) clear ipv6 traffic
- (9) debug ipv6 packet
- (10) ipv6 mtu
- (11) ipv6 redirect
- (12) ipv6 access-group
- (13) ipv6 unreachables
- (14) ipv6 route default
- (15) show ipv6 general-prefix
- (16) show ipv6 pmtu
- (17) show ipv6 traffic

34.2.1.1 clear ipv6 traffic

Syntax

To delete the statistics information about the IPv6 flow, run the following command: **clear ipv6 traffic**

Parameter

None

Command Mode

EXEC

Usage Guidelines

This command is used to delete all the statistics information about IPv6 flow.

Example

The following example shows how to delete the statistics information about IPv6 flow:

- Switch# clear ipv6 traffic
- Switch# show ipv6 traffic
- IPv6 statistics:
- Rcvd: 0 total, 0 local destination
- 0 badhdrs, 0 badvers
- 0 tooshort, 0 toosmall, 0 toomanyhdrs
- 0 source-routed, 0 badscope
- 0 badopts, 0 unknowopts, 0 exthdrtoolong
- 0 fragments, 0 total reassembled
- 0 reassembly timeouts, 0 reassembly failures
- Sent: 0 generated, 0 forwarded, 0 cant forwarded
- 0 fragmented into 0 fragments, 0 failed
- 0 no route
- Mcast: 0 received, 0 sent

ICMP statistics:

Rcvd: 0 total, 0 format errors, 0 checksum errors
0 unreachable, 0 packet too big
0 time exceeded, 0 parameter problem
0 echos, 0 echo replies
0 membership query, 0 membership report, 0 membership reduction
0 Switch solicitations, 0 Switch advertisements
0 neighbor solicitations, 0 neighbor advertisements, 0 redirect
Sent: 0 total, 0 bandwidth limit
0 unreachable, 0 packet too big
0 time exceeded, 0 parameter problem
0 echos, 0 echo replies

0 membership query, 0 membership report, 0 membership reduction

0 Switch solicitations, 0 Switch advertisements

0 neighbor solicitations, 0 neighbor advertisements, 0 redirect

Related Commands

show ipv6 traffic

34.2.1.2 debug ipv6 packet

Syntax

To display the debug information about the IPv6 packet, run the first one of the following two commands:

debug ipv6 packet [interface interface-type interface-number | access-list [access-list-name] | detail]

no debug ipv6 packet

Parameter

Parameter	Description
Interface-type	Type of the interface (optional)
Interface-number	ID of an interface (optional)
access-list-namae	Name of ACL (optional)

Default

The debug information is disabled in default settings.

Command Mode

EXEC

Example

The following example shows how to export the IPv6 debug information:

Switch# debug ipv6 packet

2002-1-1 05:07:16

IPv6: source FE80::A00:3EFF:FE12:3459, dest FF02::1

plen 32, proto 58, hops 255

sending on Ethernet1/0

Field	Description
source	Source address in the IPv6 packet
dest	Destination address in the IPv6 packet
plen	Load length in the IPv6 packet
proto	Protocol for the next header encapsulation, which is presented by
hops	Value of hop-limit in the IPv6 packet
sending (receiving,	Displays packet transmission, reception and forwarding on an interface.
forwarding) on Ethernet	

34.2.1.3 ipv6 mtu

Syntax

To set the MTU of the VLAN port, run the first one of the following two commands. To return to the default setting, use the no form of this command. **ipv6 mtu** *bytes*

no ipv6 mtu

Parameter

Parameter	Description
bytes	MTU(unit : byte)

Default

The default value depends on the port type, but the minimum value of any port is 1280 bytes.

Command Mode

VLAN interface configuration mode

Usage Guidelines

When MTU is the default value, RA has the MTU option.

When a switch forwards packet, a packet will not be fragmented just because the MTU of the egress is smaller than the packet's length. But it will be fragmented only when the transmitted packet is generated.

Example

The following example shows how to set MTU of the interface: Switch_config_v1# ipv6 mtu 1400

Related Command

show ipv6 interface

34.2.1.4 ipv6 redirects

Syntax

To control whether to transmit a redirection packet after the packet is forwarded, run **ipv6** redirects.

ipv6 redirects no ipv6 redirects

Parameter

None

Default

The redirection packet will be transmitted by default.

Command Mode

VLAN Interface configuration mode

Usage Guidelines

The redirection packets are transmitted through the ICMPv6 protocol.

Example

1. The following example shows how to enable a port to transmit the redirection packet. Switch_config_v1# ipv6 redirects

The following example shows how to disable a port to transmit the redirection packet.
 Switch_config_v1# no ipv6 redirects
 Use show ipv6 interface command can check whether the port will transmit the redirection packet.

Related Commands

show ipv6 interface

34.2.1.5 ipv6 access-group

Syntax

To filter the received packet of some port, run the first one of the following commands. To return to the default setting, use the no form of this command.

ipv6 access-group access-list-name { in | out }

no ipv6 access-group { in | out }

Parameter

Parameter	Description
access-list-name	access list name
In	Filter direction, receiving packets
Out	Filter direction, forwarding packets

Default

The filter function is not set by default.

Command Mode

VLAN interface configuration

Usage Guidelines

None

Example

The following example shows how to use the access list test to filter packets when received in port vlan 1:

Switch_config_v1# ipv6 access-group test in

Related Commands

Ipv6 access-list Show ipv6 interface

34.2.1.6 ipv6 unreachables

Syntax

To enable an interface to generate and transmit the ICMPv6 unreachable packets, run **ipv6 unreachable**. **ipv6 unreachables no ipv6 unreachables**

Parameter

None

Default

The unreachable packets are transmitted by default.

Command Mode

VLAN Interface configuration mode

Usage Guidelines

The unreachable packets are transmitted through the ICMPv6 protocol.

Example

The following example shows how to disable the VLAN interface to transmit the unreachable packets.

Switch_config_v1# no ipv6 unreachables

Related Commands

None

34.2.1.7 ipv6 route default

Syntax

To configure the default ip6 gateway, use ipv6 route default command. ipv6 route default [NULL | X:X:X:X] no ipv6 route default[NULL | X:X:X:X]

Parameter

Parameter	Description
-----------	-------------

NULL	NULL interface
X:X:X:X::X	Gateway address

Default

None

Command Mode

Global configuration mode

Example

The following example shows how to set the address of 2008::1 as the route default of the switch.

ipv6 route default 2008::1

Related Command

None

34.2.1.8 show ipv6 general-prefix

Syntax

To display the detailed information about the general prefix of IPv6, run the following command: **show ipv6 general-prefix**

Parameter

None

Command Mode

EXEC

Example

Switch_config#show ipv6 general-prefix IPv6 Prefix my-prefix, acquired via manual 2002::/64 Vlan1 (Address command)

 Field
 Remarks

 IPv6 Prefix
 Stands for the name of the general IPv6 prefix defined by user.

Acquire via	Stands for the configuration method of the general prefix. At present, the manual
	configuration and the automatic DHCP obtainment are supported.
Vlan1 (Address command)	Stands for a list of ports that use this general prefix.

Related Commands

ipv6 general-prefix

34.2.1.9 show ipv6 pmtu

Syntax

To display the cache options of path MTU, run the following command: **show ipv6 pmtu**

Parameter

None

Command Mode

EXEC

Example

Switch_config#show ipv6 pmtu PMTU Expired Destination Address 1300 00:04:00 2002:1::1 1280 00:01:00 2001:2::2

The cache of path MTU stores the path MTU which is applied to reach a destination address. If the to-be-transmitted packets generated by routers or switches are bigger than the path MTU, they will be fragmented during being transmitted.

The switch will create a path MTU record when receiving an ICMPv6 too-big packet.

Field	Remarks
MTU	Stands for the value of the path MTU. It is this MTU that is contained in the received ICMPv6 too-big packet.
Expired	It means expiration. The expiration time starts counting when the ICMPv6 "too-big" packet is received. When the expired parameter is 0, this path MTU record will be deleted.
Destination Address	Stands for the destination address. It is this destination address that is contained in the received ICMPv6 too-big packet.

Related Commands

ipv6 mtu

34.2.1.10 show ipv6 traffic

Syntax

To display the statistics of IPv6 flow, run the following command: **show ipv6 traffic**

Parameter

None

Command Mode

EXEC

Example

Switch#show ipv6 traffic IPv6 statistics: Rcvd: 0 total. 0 local destination 0 badhdrs, 0 badvers 0 tooshort, 0 toosmall, 0 toomanyhdrs 0 source-routed, 0 badscope 0 badopts, 0 unknowopts, 0 exthdrtoolong 0 fragments, 0 total reassembled 0 reassembly timeouts, 0 reassembly failures Sent: 25 generated, 0 forwarded, 0 cant forwarded 0 fragmented into 0 fragments, 0 failed 0 no route Mcast: 0 received, 25 sent **ICMP** statistics: Rcvd: 25 total, 0 format errors, 0 checksum errors 0 unreachable, 0 packet too big 0 time exceeded, 0 parameter problem 0 echos, 0 echo replies 0 membership query, 0 membership report, 0 membership reduction 0 Switch solicitations, 0 Switch advertisements 0 neighbor solicitations, 0 neighbor advertisements, 0 redirect Sent: 0 total, 0 bandwidth limit 0 unreachable, 0 packet too big 0 time exceeded, 0 parameter problem 0 echos, 0 echo replies

0 membership query, 0 membership report, 0 membership reduction 0 Switch solicitations, 0 Switch advertisements

0 neighbor solicitations, 0 neighbor advertisements, 0 redirect

Related Commands

clear ipv6 traffic

34.2.2 Network Test Tools Commands

IPv6 network test tools commands include:

- (18) ping6
- (19) traceroute6

34.2.2.1 ping6

Syntax

To test the accessibility and connectivity of the host, run the following command. The command enables the host forwards ICMP packets to another host and get ICMP response packets from it. ping6 host [-a] [-l length] [-n number] [-v] [–w waittime] [-b internal]

Parameter

Parameter	Description
host	Destination host address or host name.
-a	Continuous forward icmp echo request packets until the user disable it manually.
-l length	Set the length of the ICMO data in the packets. The default is 56 bytes.
-n number	Set the number of toal transmitted packets. The default one is 5 packets.
-w waittime	The time of waiting each packet response. The default one is 2 seconds.
-b interval	Set the time interval of transmitting ping packets.
	Unit: 10ms; value ranges: 0-65535; the default is 0.

Command Mode

Exec, global configuration mode

Usage Guidelines

To disable ping, press "q" or "Q".

The output by default:

Parameter	Description
!	Receive the response packet.
•	No response packet in timeout.
U	Receive the ICMP destination unreachable packet.
R	Receive the ICMP redirection packet.
Т	Receive the ICMP timeout packet.
р	Receive the ICMP parameter packet.

The output of statistics information:

Parameter	Description
packets transmitted	The number of transmitted packets.
packets received	The number of received packets, not include other ICMP packets.
packet loss	The proportion of packet loss.
round-trip min/avg/max	The minimum/average/max response time (ms).

The routing switch supports the destination address is the link-local address or multicast address. When ping this address, the command must designate the vlan interface first and forward ICMP echo packets on the interface. The routing switch will output all addresses of response hosts.

Example

·ping multicast address:
switch#ping6 ff02::1 vlan 1 -n 2
PING 1 (FF02:1B::1): 56 data bytes

Reply to request 0 from FE80::2E0:FFF:FEDB:583F, <10 ms Reply to request 0 from FE80::1EAF:F7FF:FE35:D02A, 10 ms Reply to request 1 from FE80::2E0:FFF:FEDB:583F, <10 ms Reply to request 1 from FE80::1EAF:F7FF:FE35:D02A, 10 ms

34.2.2.2 traceroute6

The command is used to trace the destination route.

Transmit the UDP packets (or ICMP ECHO packets) with different TTL (Time to Live) to the destination, so that the route of the destination can be traced. Each router in the path has to reduce its TTL by 1 at least before transmitting the ICMP response packets, therefore, TTL is an effective way for accounting. When the TTL of the packet reduce to 0, the router sends back ICMP timeout information to the source system. Transmit first response packet whose TTL is 1 and add 1 to the TTL in subsequent transmission until the receive the response packet or reach the max TTL value.

Trace the router by detecting ICMP Time Exceeded information it sends back. When reaching the destination, the destination node can only sends back ICMP information that the port is unreachable, as traceroute transmit UDP packets whose port number is greater than 30000. The destination is arrived as the report is received.

Syntax

traceroute6 host [-i source-ip-address] [-p port-number] [-q probe-count] [-t ttl] [-w waittime] [-x icmp]

Parameter

Parameter	Description
host	Destination host address or host name.
-i source-ip-address	Sets the source IP address.
-p port-number]	Sets the destination port number transmitting UDP packets. The default is
	33434.
- q probe-count	Sets the packet number of each detection. The default is 3 packets.
-t tt/	Sets the IP TTL of the packet to ttl. The TTL is 1 in minimum by default and 30
	in maximum.
- w waittime	The time of each packet for waiting response. The default time is 3 seconds.
-x icmp	Sets the detection packet as the ICMP ECHO packet. The default is UDP packet.

Command Mode

EXEC, Global Configuration Mode

Usage Guidelines

The command is used to trace the router by UDP packets. To trace the router by ICMP ECHO packets by command –x icmp. To disable traceroute, press "q" or "Q". Output by default:

Parameter	Description
!N	Receive ICMP destination unreachable packets (the route is unreachable, code: 0)
!P	Receive ICMP destination unreachable packets (forbid out of management, code: 1)
!S	Receive ICMP destination unreachable packets (not neighbor, code: 2)
!A	Receive ICMP destination unreachable packets (unreachable address, code: 3)
!	Receive ICMP destination unreachable packets (unreachable port, code: 4)

The output of statistics information:

Parameter	Description
hops max	Max trace hop number (The uplimit of ICMP increment)
byte datalen	Size of each trace packet

Example

switch#traceroute6 2008::2 tracert6 to 2008::2, 30 hops max, 12 byte datalen 1 2008::2 0 ms * 0 ms

35 Neighbor Detection Configuration Commands

35.1 ND Commands

Neighbor Detection (ND) commands include the following ones:

- debug ipv6 nd
- show ipv6 neighbors
- clear ipv6 neighbors
- ipv6 neighbor

35.1.1 debug ipv6 nd

Syntax

To enable the switch of printing ND debugging information, run the following command: **debug ipv6 nd** [*entry* | *timer* | X:X:X:X | *adj-table*]

Parameter

Parameter	Description
entry	Stands for the switch of neighbor cache entry changes.
timer	Stands for the switch of neighbor cache timer changes.
X:X:X:X:X	Stands for the IPv6 address of neighbor cache.
adj-table	Stands for the debug switch of neighbor adjacency table.

Default

By default, the switch of printing ND debugging information is in disabled state.

Command Mode

EXEC

Usage Guidelines

If the command carries with no extension parameters, all debugging switches are enabled.

Example

None

Related Command

None

35.1.2 show ipv6 neighbors

Syntax

To display the current switch's neighbor cache, run the following command: **show ipv6 neighbors** [interface | **summary**]

Parameter

Parameter	Description
interface	Display the IPv6 neighbor cache based on the interface.
summary	Display summary IPv6 neighbor cache information.

Default

Display all IPv6 neighbor cache information.

Command Mode

EXEC

Usage Guidelines

None

Related Command

None

35.1.3 clear ipv6 neighbors

Syntax

To cancel on a switch all neighbor caches that are not configured manually, run the following command: **clear ipv6 neighbors**

Parameter

None

Default

None

Command Mode

EXEC

Usage Guidelines

This command can only cancel all those neighbor caches automatically obtained by a switch itself, not those manually configured by the **ipv6 neighbor** command.

Related Command

ipv6 neighbor

35.1.4 ipv6 neighbor

Syntax

To set neighbor caches of a switch, run the following command globally: **ipv6 neighbor** *address6* **vlan** *vlanid mac*

Parameter

Parameter	Description
address6	Means the IPv6 address of the neighbor.
vlanid	Stands for the ID of the VLAN port.
тас	Means the link-layer address of a neighbor.

Default

None

Command Mode

Global configuration mode

Usage Guidelines

You can use this command to set neighbor caches of a switch. These neighbor caches never times out and are always reachable until **no ipv6 neighbor** is run.

Example

IPv6_config#ipv6 neighbor 1::1 vlan 1 00:e0::4c:5a:78:eb

The above-mentioned example shows how to set on port e1/1 a neighbor whose IPv6 address is 1::1 and whose link-layer address is 00:e0:4c:5a:78:eb.

Related Command

show ipv6 neighbors

36 **OSPFv3 Configuration Commands**

36.1 **OSPFv3 Configuration Commands**

36.1.1 OSPFv3 Configuration Commands

The OSPFv3 configuration commands include:

- area default-cost
- area nssa
- area range
- area stub
- area virtual-link
- debug ipv6 ospf
- debug ipv6 ospf events
- debug ipv6 ospf ifsm
- debug ipv6 ospf lsa
- debug ipv6 ospf nfsm
- debug ipv6 ospf nsm
- debug ipv6 ospf packet
- debug ipv6 ospf route
- default-information originate
- default-metric
- filter
- ipv6 ospf area
- ipv6 ospf cost
- ipv6 ospf database-filter all out
- ipv6 ospf dead-interval
- ipv6 ospf hello-interval
- ipv6 ospf mtu-ignore
- ipv6 ospf neighbor
- ipv6 ospf network
- ipv6 ospf priority
- ipv6 ospf retransmit-interval
- ipv6 ospf transmit-delay
- passive-interface
- redistribute
- router ospfv3

- router-id
- show ipv6 ospf
- show ipv6 ospf database
- show ipv6 ospf interface
- show ipv6 ospf neighbor
- show ipv6 ospf route
- show ipv6 ospf virtual-link
- summary-prefix
- timers delay
- timers hold
- timers age

36.1.1.1 area default-cost

Syntax

To specify the cost of the default summary route in the NSSA or STUB area, run the first one of the following two commands:

area area-id default-cost cost no area area-id default-cost cost

Parameter

Parameter	Description
area-id	Means the ID of the NSSA or STUB area.
cost	Means the cost of the default summary route.

Default value

The default value is 1.

Command mode

Routing configuration mode

Usage guidelines

The command is helpful only when it is used on the boundary router connecting the NASSA area or the STUB area. After the **area stub default-information-originate** command is configured, the cost configured by this command will be used in LSA to set the corresponding cost.

Example

The following example shows how to set the default cost of stub domain 36.0.0.0 to 20:

interface vlan 1

ipv6 add 2001::1/64

ipv6 ospf 1 area 36.0.0.0

ļ

router ospfv3 1

router-id 2.2.2.2

area 36.0.0.0 stub

area 36.0.0.0 default-cost 20

Related command

area nssa

area stub

36.1.1.2 area nssa

Syntax

To configure a NSSA area, run the first one of the following two commands:

area area-id nssa [default-information-originate [metric value] [metric-type {1 | 2}]] [interval value] [no-redistribute] [no-summary] [range {ipv6-prefix/prefix-length} [advertise | not-advertise]] [translator {always|candidate}]

no area *area-id* nssa [default-information-originate [metric value] [metric-type {1 | 2}]] [interval value] [no-redistribute] [no-summary] [range {*ipv6-prefix/prefix-length*} [advertise | not-advertise]] [translator {always|candidate}]

Parameter

Parameter	Description
area-id	Sets the ID of the NSSA area. It can be a decimal number or an IP address.
default-information-	Means to send the default route to the NSSA area. After this command is
originate	configured, if it is a non-ABR in the NSSA area, it needs an IPv6 default route on
	the device before sending the default route to the NSSA area; on the ABR,
	regardless of whether there is an IPv6 default route on the device, it will be sent
	to NSSA Area sending default route

metric value	Stands for the cost of the default route, which ranges from 1 to 16777214.
metric-type {1 2}	Means the cost type of the default route.
interval value	Means the stable time of the NSSA translator role, which ranges from 1 to 65535.
no-redistribute	Means not to redistribute a route to the NSSA area.
no-summary	Forbids the ABR router to send the summary link to the NSSA area.
range	Means to conduct summary when type-7 LSA is translated into type-5 LSA.
translator	Stands for the NSSA translator role; if the parameter "always" is used, it means it
	is always the translator, and if it is the parameter "candidate", it means it can be
	chosen as a translator.

Default value

Non-NSSA area

Command mode

Routing configuration mode

Usage guidelines

All routers and access servers in the NSSA area will be configured by the area nssa command.

To decrease the number of LSA's, you can run **no summary** on the ABR router to forbid the summary LSA to enter the NSSA area.

The parameter "no-distribute" is always used for ABR and its purpose is to stop redistributed routes from being sent to the NSSA area.

Example

The following example shows how to set the NSSA area of 36.0.0.0:

interface vlan 1

ipv6 address 2001::1/64

ipv6 ospf 1 area 36.0.0.0

ļ

router ospfv3 1

router-id 2.2.2.2

area 36.0.0.0 nssa

ļ

Related command

area stub

36.1.1.3 area range

Syntax

To summarize the routes at the field boundary, run **area** *area-id* **range**. To cancel the previous settings, run **no area** *area-id* **range**.

area area-id range {ipv6-prefix /prefix-length} [advertise | not-advertise] no area area-id range {ipv6-prefix /prefix-length}

Parameter

Parameter	Description
area-id	Means the fields where the fields will be summarized. It can be a decimal number or an IPv6 address.
ipv6-prefix	Means the prefix of the IPv6 address.
prefix-length	Means the length of the IPv6 address' prefix.
advertise	Means that the routes are released after they are summarized.
not-advertise	Means that the routes are not released after they are summarized.

Default value

The command has no effect by default.

Command mode

Routing configuration mode

Usage guidelines

The **area range** command is not run on the ABR router, enabling ABR to be broadcast to other routers through a summary route. In this way, the route of the field boundary is miniatured. As to the outside of the area, each address range has only one summary route.

The command can be configured on the routers in multiple areas, and OSPF, hence, can summarize many address ranges.

Example

The following example shows how to set the prefix of the summarized IPv6 address in area 1, 2001:0DB8:0:1::/64:

interface vlan 1

ipv6 address 2001::1/64

ipv6 ospf 1 area 1

ļ

router ospfv3 1

router-id 192.168.255.5

area 1 range 2001:0DB8:0:1::/64

36.1.1.4 area stub

Syntax

To configure a STUB area, run the first one of the following two commands. To cancel the configuration, run the other command.

area area-id stub [no-summary] no area area-id stub [no-summary]

Parameter

Parameter	Description
area-id	Sets the ID of the STUB area. It can be a decimal number or an IP address.
no-summary	Forbids the ABR router to send the summary link to the STUB area.

Default value

Non-stub area

Command mode

Routing configuration mode

Usage guidelines

All routers and access servers in the STUB area will be configured by the **area stub** command. The ABR router adopts the **default-cost** option to set the cost from the internal router to the STUB area.

The **default-cost** subcommand is only used on the domain border router connected to the stub area to set the cost of the convergence route generated by the domain border router to reach the stub area.

To decrease the number of LSA's, you can run **no summary** on the ABR router to forbid the summary LSA to enter the STUB area.

Example

The following example shows how to set the STUB area of 36.0.0.0:

interface vlan 1

ipv6 address 2001::1/64

ipv6 ospf 1 area 36.0.0.0

ļ

router ospfv3 1

router-id 2.2.2.2

area 36.0.0.0 stub

ļ

Related command

area nssa

36.1.1.5 area virtual-link

Syntax

To configure a virtual link, run the first one of the following two commands.

area area-id virtual-link neighbor-ID [dead-interval dead-value][hello-interval hello-value][retransmit-interval retrans-value][transmit-delay dly-value]

no area area-id virtual-link neighbor-ID

Parameter

Parameter	Description
area-id	Specifies the transit-area of the virtual link.
neighbor-id	OSPF router ID of the peer router of virtual link
dead-value	Stands for the interval for the local router to regard that the neighbor dies, whose unit is second. The values configured at the two terminals of the virtual link must be same.
hello-value	Stands for the interval for the router to transmit the HELLO packet on the virtual link, whose unit is second. The values configured at the two terminals of the virtual link must be same.
retrans-value	Interval for the router to transmit the re-transmit packet on the virtual link,

	whose unit is second
	The values configured at the two terminals of the virtual link must be same.
dly-value	Delay value which is reported by the router to LSA on the virtual link, whose unit
	is second
	The values configured at the two terminals of the virtual link must be same. The
	values configured at the two terminals of the virtual link must be same.

Default value

The virtual link is not configured.

The default values of other parameters are shown in the following: Hello-value: 10s, Dead-value : 40s, Retrans-value : 5s, dly-value : 1s

Command mode

Routing configuration mode

Usage guidelines

In order to create a virtual link, you have to perform configuration at the two terminals of the virtual link. If only one terminal need be configured, the virtual link cannot function.

The **area-id** parameter cannot be zero because the transit area of the virtual link must not be the backbone area. The area-id configured at the two terminals of the virtual link must be same.

Parameters configured at the two terminals of the virtual link must be same.

After the virtual link is created (the neighborhood is in the FULL state), the virtual link works in the Demand Circuit mode, that is, the periodical Hello packet and the LSA refresh packet are not transmitted.

You can run no **area** *area-id* **virtual-link** *neighbor-ID* to cancel the previous configuration of the virtual link. You also can run **show ip ospf virtual-link** to check the state of the virtual link.

Example

The following example shows how to create a virtual link between router A and router B. Configuration of Switch A(router-id: 200.200.200.1)

```
ļ
```

interface vlan 1

ipv6 address 2001::1/64

ipv6 ospf 1 area 1

ļ

router ospfv3 1

router-id 200.200.200.1

area 1 virtual-link 200.200.200.2

```
ļ
```

```
Configuration of Switch B(router-id: 200.200.200.2):
```

i

```
interface vlan 1
```

ipv6 address 2001::2/64

ipv6 ospf 1 area 1

!

router ospfv3 1

router-id 200.200.200.2

area 1 virtual-link 200.200.200.1

ļ

Related command

show ipv6 ospf virtual-link

36.1.1.6 debug ipv6 ospf

Syntax

To open all debugging switches of the OSPFv3 module, run the first one of the following two commands: debug ipv6 ospf no debug ipv6 ospf

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

This command can be used to collect all debugging information about the OSPFv3 for the R&D engineers and technical support staff.

Example

Switch# debug ipv6 ospf						
LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.200.1 *]: Install Intra-Area-Prefix-LSA to Area 0.0.0.1						
LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.200.1 *]: consider flooding through interface[FastEthernet0/0]						
LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.200.1 *]: Intra-Area-Prefix-LSA(0x38110c0) originated						
VLINK[VLINK1]: local address is 101::1VLINK[VLINK1]: peer 200.200.200.2 lin	k					
upLSA[Link(FastEthernet0/0):Type(0x0008):0.0.0.4:200.200.200.1 *]: Install Link-LSA to Link FastEthernet0/0						
LSA[Link(FastEthernet0/0):Type(0x0008):0.0.0.4:200.200.200.1 *]: consider flooding through interface[FastEthernet0/0]						
LSA[Link(FastEthernet0/0):Type(0x0008):0.0.0.4:200.200.1 *]: Link-LSA(0x381ec40) originated						
OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT.						
LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: Install Router-LSA to Area 0.0.0.1						
LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: consider flooding through interface[FastEthernet0/0]						
LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: Router-LSA(0x381ec20) originated						
IFSM[FastEthernet0/0]: Down (InterfaceUp)						
IFSM[FastEthernet0/0]: Status change Down -> Waiting						
SPF[0.0.0.0]: Calculation timer scheduled [delay 5 secs]						
LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: Install Router-LSA to Area 0.0.0.0						
LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: consider flooding through interface[VLINK1]						
LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: Router-LSA(0x38297e0) originated						
IFSM[VLINK1]: Down (InterfaceUp)						
IFSM[VLINK1]: Status change Down -> Point-To-Point						
ROUTER[1]: Change status to ABR						
IFSM[FastEthernet0/0]: Hello timer expire						
Packet[SEND]: src(fe80:4::2e0:fff:fe26:2d98) -> dst(ff02::5)						
OSPFv3 Header						
Version 3 Type 1 (Hello) Packet length 36						
Router ID 200.200.1						
Area ID 0.0.0.1						
Checksum 0x0000 Instance ID 0						
OSPFv3 Hello						
Interface ID 4						
RtrPriority 1 Options 0x000013 (- R - - E V6)						

KYLAND

HelloInterval 10 RtrDeadInterval 40 DRouter 0.0.0.0 BDRouter 0.0.0.0 # Neighbors 0 OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET.

36.1.1.7 debug ipv6 ospf events

Syntax

To enable the event debug switch of the OSPFv3 module, run the first one of the following two commands: **debug ipv6 ospf events** {abr|asbr|vlink|os|router} **no debug ipv6 ospf events** { abr|asbr|vlink|os|router }

Parameter

Parameter	Description
abr	Opens the state change debug switch of ABR.
asbr	Opens the state change debug switch of ASBR.
vlink	Opens the state change debug switch of the virtual link.
os	Opens the state change debug switch of socket.
router	Opens the debug switch of OSPF.

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by the command, you can check the OSPF port and the neighbor trigger event.

Example

Switch# debug ip ospf events

OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. ROUTER[1]: Change status to ABR OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3 MSG RCV SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3 MSG RCV SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3 MSG RCV TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3 MSG RCV TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. VLINK[VLINK1]: peer 200.200.200.2 link downROUTER[1]: Change status to non-ABR OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. ROUTER[Process:1]: GC timer expire OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3 MSG RCV TIMER.

925

OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_TIMER. ROUTER[Process:1]: GC timer expire OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_SOCKET. join AllDRouters on FastEthernet0/00SPF6D: Received ospfv3 message: OSPFV3 MSG RCV EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT. OSPF6D: Received ospfv3 message: OSPFV3_MSG_RCV_EVENT.

36.1.1.8 debug ipv6 ospf ifsm

Syntax

To enable the state machine's debug switch of the OSPFv3 module, run the first one of the following two commands:

debug ipv6 ospf ifsm {status|events|timers}
no debug ipv6 ospf ifsm {status|events|timers}

Parameter

Parameter	Description
status	Opens the state debug switch of the interface state machine.
events	Opens the event debug switch of the interface state machine.
timers	Opens the timer debug switch of the interface state machine.

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by the command, you can check the whole process of the state machine of the OSPF interface.

Example

Switch # debug ipv6 ospf ifsm IFSM[VLINK1]: Down (InterfaceUp) IFSM[VLINK1]: Status change Down -> Point-To-Point IFSM[FastEthernet0/0]: Down (InterfaceUp) IFSM[FastEthernet0/0]: Status change Down -> Waiting IFSM[FastEthernet0/0]: Hello timer expire IFSM[VLINK1]: Hello timer expire IFSM[VLINK1]: ifsm ignore called IFSM[VLINK1]: Point-To-Point (NeighborChange) IFSM[FastEthernet0/0]: ifsm ignore called IFSM[FastEthernet0/0]: Waiting (NeighborChange) IFSM[VLINK1]: LS ack timer expire IFSM[VLINK1]: LS ack timer expire IFSM[VLINK1]: Point-To-Point (InterfaceDown) IFSM[VLINK1]: Status change Point-To-Point -> Down IFSM[VLINK1]: ifsm ignore called IFSM[VLINK1]: Down (NeighborChange) IFSM[FastEthernet0/0]: Hello timer expire IFSM[FastEthernet0/0]: Hello timer expire IFSM[FastEthernet0/0]: Hello timer expire IFSM[FastEthernet0/0]: Wait timer expire IFSM[FastEthernet0/0]: DR-Election[1st]: Backup 200.200.200.2 IFSM[FastEthernet0/0]: DR-Election[1st]: DR 200.200.200.2 IFSM[FastEthernet0/0]: Waiting (WaitTimer) IFSM[FastEthernet0/0]: Status change Waiting -> DROther IFSM[VLINK1]: Down (InterfaceUp) IFSM[VLINK1]: Status change Down -> Point-To-Point IFSM[FastEthernet0/0]: DR-Election[1st]: Backup 200.200.200.1 IFSM[FastEthernet0/0]: DR-Election[1st]: DR 200.200.200.2 IFSM[FastEthernet0/0]: DR-Election[2nd]: Backup 200.200.200.1 IFSM[FastEthernet0/0]: DR-Election[2nd]: DR 200.200.200.2 IFSM[FastEthernet0/0]: DROther (NeighborChange) IFSM[FastEthernet0/0]: Status change DROther -> Backup IFSM[FastEthernet0/0]: Hello timer expire IFSM[FastEthernet0/0]: LS ack timer expire IFSM[VLINK1]: Hello timer expire IFSM[FastEthernet0/0]: LS ack timer expire IFSM[VLINK1]: Point-To-Point (InterfaceDown) IFSM[VLINK1]: Status change Point-To-Point -> Down IFSM[VLINK1]: Down (InterfaceUp) IFSM[VLINK1]: Status change Down -> Point-To-Point IFSM[FastEthernet0/0]: LS ack timer expire IFSM[VLINK1]: Hello timer expire

•••••

36.1.1.9 debug ipv6 ospf lsa

Syntax

To enable the LSA-related debug switch of the OSPFv3 module, run the first one of the following two commands: debug ipv6 ospf lsa { generate|flooding|install|maxage|refresh} no debug ipv6 ospf lsa { generate|flooding|install|maxage|refresh}

Parameter

Parameter	Description
generate	Opens the debug switch of LSA create.

flooding	Opens the debug switch of LSA exchange.
install	Opens the debug switch of LSA installation.
maxage	Opens the debug switch of LSA timeout.
refresh	Opens the debug switch of LSA-Refresh.

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by the command, you can browse the operation that OSPF performs to LSA and related events.

Example

Switch # debug ipv6 ospf lsa

LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.1*]: Install Intra-Area-Prefix-LSA to Area 0.0.0.1 LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.1*]: consider flooding through interface[FastEthernet0/0] LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.1 *]: Intra-Area-Prefix-LSA(0x3824ba0) originated LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: Install Router-LSA to Area 0.0.0.0 LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: consider flooding through interface[VLINK1] LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.1 *]: consider flooding to neighbor[200.200.200.2] LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: Router-LSA(0x3819be0) originated LSA[Link(FastEthernet0/0):Type(0x0008):0.0.0.4:200.200.200.1 *]: Install Link-LSA to Link FastEthernet0/0 LSA[Link(FastEthernet0/0):Type(0x0008):0.0.0.4:200.200.200.1 *]: consider flooding through interface[FastEthernet0/0] LSA[Link(FastEthernet0/0):Type(0x0008):0.0.0.4:200.200.1 *]: Link-LSA(0x3819bc0) originated LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: Install Router-LSA to Area 0.0.0.1 LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: consider flooding through interface[FastEthernet0/0] LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: Router-LSA(0x3824740) originated LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.2]: instance(0x380bf60) created with Link State Update LSA[Area(0.0.0.0):Type(0x2003):0.0.0.1:200.200.2]: instance(0x38246c0) created with Link State Update LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.2]: flood started

LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.2]: consider flooding through interface[VLINK1] LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.2]: consider flooding to neighbor[200.200.200.2] LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.2]: neighbor is not Full state LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.2]: Install Router-LSA to Area 0.0.0.0 LSA[Area(0.0.0.0):Type(0x2003):0.0.0.1:200.200.200.2]: flood started LSA[Area(0.0.0.0):Type(0x2003):0.0.0.1:200.200.2]: consider flooding through interface[VLINK1] LSA[Area(0.0.0.0):Type(0x2003):0.0.0.1:200.200.200.2]: consider flooding to neighbor[200.200.200.2] LSA[Area(0.0.0.0):Type(0x2003):0.0.0.1:200.200.200.2]: neighbor is not Full state LSA[Area(0.0.0.0):Type(0x2003):0.0.0.1:200.200.20.2]: Install Inter-Area-Prefix-LSA to Area 0.0.0.0 LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: Install Router-LSA to Area 0.0.0.0 LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: consider flooding through interface[VLINK1] LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.1 *]: consider flooding to neighbor[200.200.200.2] LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.1 *]: added to neighbor[200.200.200.2]'s retransmit-list LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: sending update to interface[VLINK1] LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: Router-LSA refreshed **OSPFv3 LSA Header** LS age 0 LS type 0x2001 (Router-LSA) Advertising Router 200.200.200.1 Link State ID 0.0.0.0 LS sequence number 0x80000002 LS checksum 0x5ff7 length 40 LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *]: consider flooding through interface[VLINK1] LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: Install Router-LSA to Area 0.0.0.1 LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: consider flooding through interface[FastEthernet0/0] LSA[Area(0.0.0.1):Type(0x2001):0.0.0.0:200.200.200.1 *]: Router-LSA refreshed **OSPFv3 LSA Header** LS age 0 LS type 0x2001 (Router-LSA) Advertising Router 200.200.200.1 Link State ID 0.0.0.0

LS sequence number 0x80000002

LS checksum 0x5382

length 24

LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.200.1 *]: Install Intra-Area-Prefix-LSA to Area 0.0.0.1

LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.1 *]: consider flooding through interface[FastEthernet0/0]

LSA[Area(0.0.0.1):Type(0x2009):0.0.0.1:200.200.200.1 *]: Intra-Area-Prefix-LSA refreshed

LS age 0

LS type 0x2009 (Intra-Area-Prefix-LSA)

Advertising Router 200.200.200.1

Link State ID 0.0.0.1

LS sequence number 0x80000002

LS checksum 0x3631

length 64

.....

36.1.1.10 debug ipv6 ospf nfsm

Syntax

To enable the state machine's debug switch of the OSPFv3 neighbor, run the first one of the following two commands:

debug ipv6 ospf nfsm {status|events|timers}
no debug ipv6 ospf nfsm {status|events|timers}

Parameter

Parameter	Description
status	Opens the state debug switch of the neighbor state machine.
events	Opens the event debug switch of the neighbor state machine.
timers	Opens the timer debug switch of the neighbor state machine.

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by the command, you can check the whole process of the OSPF neighbor's state machine.

Example

Switch # debug ipv6 ospf nfsm NFSM[200.200.200.2-00000004]: Full (HelloReceived) NFSM[200.200.2-00000004]: nfsm_ignore calledNFSM[200.200.2-00000004]: Full (2-WayReceived) NFSM[200.200.200.2-00000004]: Down (HelloReceived) NFSM[200.200.200.2-00000004]: Status change Down -> Init NFSM[200.200.200.2-00000004]: nfsm ignore called NFSM[200.200.2-00000004]: Init (1-WayReceived) NFSM[200.200.200.2-00000004]: Init (HelloReceived) NFSM[200.200.2-00000004]: Init (2-WayReceived) NFSM[200.200.2-00000004]: Status change Init -> 2-Way NFSM[200.200.200.2-00000004]: 2-Way (HelloReceived) NFSM[200.200.200.2-00000004]: nfsm ignore called NFSM[200.200.200.0000004]: 2-Way (2-WayReceived) NFSM[200.200.200.2-00000004]: 2-Way (AdjOK?) NFSM[200.200.200.2-00000004]: Status change 2-Way -> ExStar tNFSM[200.200.200.2-00000004]: ExStart (HelloReceived) NFSM[200.200.2-00000004]: nfsm_ignore called NFSM[200.200.200.2-00000004]: ExStart (2-WayReceived) NFSM[200.200.2-00000004]: DD Retransmit timer expire NFSM[200.200.200.2-00000004]: ExStart (NegotiationDone) NFSM[200.200.2-00000004]: Status change ExStart -> Exchange NFSM[200.200.200.2-00000004]: Exchange (ExchangeDone) NFSM[200.200.200.2-00000004]: Status change Exchange -> Loading NFSM[200.200.200.2-00000004]: nfsm_ignore called NFSM[200.200.200.2-00000004]: Loading (LoadingDone)

NFSM[200.200.200.2-00000004]: Status change Loading -> Full NFSM[200.200.200.2-80000001]: Down (HelloReceived) NFSM[200.200.200.2-80000001]: Status change Down -> Init NFSM[200.200.2-80000001]: Init (2-WayReceived) NFSM[200.200.2-80000001]: Status change Init -> ExStart NFSM[200.200.2-80000001]: ExStart (NegotiationDone) NFSM[200.200.2-80000001]: Status change ExStart -> Exchange NFSM[200.200.2-80000001]: Exchange (ExchangeDone) NFSM[200.200.2-80000001]: Status change Exchange -> Loading NFSM[200.200.2-80000001]: nfsm_ignore called NFSM[200.200.2-80000001]: Loading (LoadingDone) NFSM[200.200.2-80000001]: Status change Loading -> Full NFSM[200.200.200.2-00000004]: Full (HelloReceived) NFSM[200.200.200.2-00000004]: nfsm_ignore called NFSM[200.200.200.2-00000004]: Full (2-WayReceived) NFSM[200.200.200.2-00000004]: Full (AdjOK?) NFSM[200.200.2-00000004]: LS update timer expire NFSM[200.200.200.2-80000001]: LS update timer expire NFSM[200.200.200.2-00000004]: LS update timer expire NFSM[200.200.2-80000001]: LS update timer expire NFSM[200.200.2-80000001]: Full (HelloReceived) NFSM[200.200.2-80000001]: nfsm ignore called NFSM[200.200.200.2-80000001]: Full (2-WayReceived) NFSM[200.200.2-00000004]: Full (HelloReceived) NFSM[200.200.200.2-00000004]: nfsm ignore called NFSM[200.200.200.2-00000004]: Full (2-WayReceived) NFSM[200.200.200.2-00000004]: LS update timer expire NFSM[200.200.200.2-80000001]: LS update timer expire

36.1.1.11 debug ipv6 ospf nsm

Syntax

To open the debug switch of information transmission between the IPv6 routing table's management module and the OSPFv3 module, run the first one of the following two commands:

debug ipv6 ospf nsm { redistribute | interface }

no debug ipv6 ospf nsm { redistribute | interface }

Parameter

Parameter	Description
redistribute	Opens the debug switch of routing information forwarding.
interface	Opens the debug switch of interface events.

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by this command, you can browse information exchange between OSPF and routing management module.

Example

Switch # debug ipv6 ospf nsm

Sep 17 16:43:53 OSPFv3: Received [NSM_MSG_ROUTE_CHG_NOTIFY:NSM_REDISTRIBUTE_DEL] message Sep 17 16:43:53 OSPFv3: Received [NSM_MSG_ROUTE_CHG_NOTIFY:NSM_REDISTRIBUTE_DEL] message

.....

36.1.1.12 debug ipv6 ospf packet

Syntax

To enable the debug switch of OSPFv3 transmission and reception, run the first one of the following two commands:

debug ipv6 ospf packet { hello|dd|ls-request|ls-update|ls-ack |detail}
no debug ipv6 ospf packet { hello|dd|ls-request|ls-update|ls-ack|detail }

Parameter

Parameter	Description
hello	Opens the debug switch of Hello packets.
dd	Opens the debug switch of DD packets.
ls-request	Opens the debug switch of IS-REQUEST packets.
ls-update	Opens the debug switch of IS-Update packets.
ls-ack	Opens the debug switch of IS-Ack packets.
detail	Observes the details of packets.

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by the command, you can check the exchange of the OSPF packets.

Example

Switch # debug ipv6 ospf packet

Packet[SEND]: src(fe80:4::2e0:fff:fe26:2d98) -> dst(ff02::5)

OSPFv3 Header

Version 3 Type 1 (Hello) Packet length 40

Router ID 200.200.200.1

Area ID 0.0.0.1

KYLAND

Checksum 0x0000 Instance ID 0 OSPFv3 Hello Interface ID 4 RtrPriority 1 Options 0x000013 (-|R|-|-|E|V6) HelloInterval 10 RtrDeadInterval 40 DRouter 200.200.200.2 BDRouter 200.200.200.1 # Neighbors 1 Neighbor 200.200.200.2 Packet[RECV]: src(101::2) -> dst(101::1) **OSPFv3** Header Version 3 Type 1 (Hello) Packet length 40 Router ID 200.200.200.2 Area ID 0.0.0.0 Checksum 0x5774 Instance ID 0 OSPFv3 Hello Interface ID 2147483649 RtrPriority 1 Options 0x000013 (-|R|-|-|E|V6) HelloInterval 10 RtrDeadInterval 40 DRouter 0.0.0.0 BDRouter 0.0.0.0 # Neighbors 1 Neighbor 200.200.200.1 RECV[Hello]: Neighbor(200.200.200.2) declare 0.0.0.0 as DR, 0.0.0.0 as Backup Packet[SEND]: src(101::1) -> dst(101::2) **OSPFv3** Header Version 3 Type 1 (Hello) Packet length 40 Router ID 200.200.200.1 Area ID 0.0.0.0 Checksum 0x0000 Instance ID 0 OSPFv3 Hello Interface ID 2147483649 RtrPriority 1 Options 0x000013 (-|R|-|-|E|V6) HelloInterval 10 RtrDeadInterval 40

KYLAND

DRouter 0.0.0.0 BDRouter 0.0.0.0

Neighbors 1

Neighbor 200.200.200.2

Packet[RECV]: src(fe80::2e0:fff:fe26:a8) -> dst(ff02::5)

OSPFv3 Header

Version 3 Type 1 (Hello) Packet length 40

Router ID 200.200.200.2

Area ID 0.0.0.1

Checksum 0xa8a8 Instance ID 0

OSPFv3 Hello

Interface ID 4

RtrPriority 1 Options 0x000013 (-|R|-|-|E|V6)

HelloInterval 10 RtrDeadInterval 40

DRouter 200.200.200.2 BDRouter 200.200.200.1

Neighbors 1

Neighbor 200.200.200.1

RECV[Hello]: Neighbor(200.200.200.2) declare 200.200.200.2 as DR, 200.200.200.1 as Backup

Packet[SEND]: src(fe80:4::2e0:fff:fe26:2d98) -> dst(ff02::5)

OSPFv3 Header

Version 3 Type 1 (Hello) Packet length 40

Router ID 200.200.200.1

Area ID 0.0.0.1

Checksum 0x0000 Instance ID 0

OSPFv3 Hello

Interface ID 4

RtrPriority 1 Options 0x000013 (-|R|-|-|E|V6)

HelloInterval 10 RtrDeadInterval 40

DRouter 200.200.200.2 BDRouter 200.200.200.1

Neighbors 1

Neighbor 200.200.200.2

.....

36.1.1.13 debug ipv6 ospf route

Syntax

To enable the debug switch of OSPFv3 routing information, run the first one of the following two commands: **debug ipv6 ospf route** { ase|install|spf|ia|nssa} **no debug ipv6 ospf route** { ase|install|spf|ia|nssa }

Parameter

Parameter	Description
ase	Opens the debug switch of exterior routing calculation.
install	Opens the debug switch of routing installation procedure.
spf	Opens the debug switch of SPF calculation.
ia	Opens the debug switch of between-domain routing calculation.
nssa	Opens the debug switch of nssa type exterior routing calculation.

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by the command, you can browse the calculation, deletion and addition of OSPF routes.

Example

Switch # debug ipv6 ospf route

Route[IA:0.0.0.0]: No SPF tree, schedule SPF calculationSPF[0.0.0.1]: SPF calculation timer expire

SPF[0.0.0.1]: SPF calculation (1st STAGE)

SPF[0.0.0.1]: Vertex[200.200.200.1-0.0.0.0]

SPF[0.0.0.1]: SPF calculation (2nd STAGE)

SPF[0.0.0.1]: SPF calculation (END)

Route[IA:0.0.0.1]: Cleanup IA route because of no ABRsRoute[IA:0.0.0.1]: Cleanup IA route because of no ABRsSPF[0.0.0.1]: Calculation

completed [0.170000 sec]

KYLAND

SPF[0.0.0.1]: Calculation timer scheduled [delay 9 secs] SPF[0.0.0.1]: SPF calculation timer expire SPF[0.0.0.1]: SPF calculation (1st STAGE) SPF[0.0.0.1]: Vertex[200.200.200.1-0.0.0.0] SPF[0.0.0.1]: SPF calculation (2nd STAGE) SPF[0.0.0.1]: SPF calculation (END) Route[IA:0.0.0.1]: Cleanup IA route because of no ABRsSPF[0.0.0.1]: Calculation completed [0.180000 sec] SPF[0.0.0.1]: Calculation timer scheduled [delay 10 secs] SPF[0.0.0.0]: Calculation timer scheduled [delay 5 secs] Route[IA:0.0.0.1]: 888::/64 calculating Network routeRoute[IA:0.0.0.1]: 888::/64 Can't find route to ABR (200.200.200.2)Route[IA:0.0.0.0]: No SPF tree, schedule SPF calculationSPF[0.0.0.0]: SPF calculation timer expire SPF[0.0.0.0]: SPF calculation (1st STAGE) SPF[0.0.0.0]: Vertex[200.200.200.1-0.0.0.0] SPF[0.0.0.0]: Link[0] (200.200.200.2-128.0.0.1): Virtual-Link SPF[0.0.0.0]: Calculate nexthop for (200.200.200.2-0.0.0.) Route[0.0.0.0:SPF]: ADD Stub Route for (200.200.200.2)SPF[0.0.0.0]: Vertex[200.200.200.2-0.0.0.0] Link[0] (200.200.200.1-128.0.0.1): Virtual-Link SPF[0.0.0.0]: SPF[0.0.0.0]: LSA[Area(0.0.0.0):Type(0x2001):0.0.0.0:200.200.200.1 *] is already in SPF tree SPF[0.0.0.0]: SPF calculation (2nd STAGE) SPF[0.0.0.0]: SPF calculation (END) SPF[0.0.0.0]: Calculation completed [0.580000 sec]

.

36.1.1.14 default-information originate

Syntax

To introduce the default route to the OSPFv3 routing domain, run the following command: default-information originate [always | metric value | metric-type {1 | 2} | tag tag] no default-information originate

Parameter

Parameter	Description
Always	Generates and releases an ASE-LSA, which describes the default route, or just

	releases it out if the default route exists in the routing table.
metric value	Stands for the cost of the default route, which ranges from 1 to 16777214.
metric-type	Means the cost type of the default route.
tag tag	Means the routing identifier, which ranges from 0 to 4294967295.

Default value

No default route is introduced.

Command mode

Routing configuration mode

Usage guidelines

The redistribute command cannot introduce the default route, and if you want to introduce the default route, you can use this command.

If the **always** parameter is set, no matter whether the default route exists in the current routing table, ASE-LSA, describing the default route, will be released out; if the **always** parameter is not set, ASE-LSA will be released out only when the default route exists in the current routing table.

Example

The following example shows how to introduce the default route from the OSPFv3 autonomous system.

router ospfv3 1

router-id 2.2.2.2

default-information originate always

Related command

redistribute

36.1.1.15 default-metric

Syntax

To set the default weight of the introduced route, run the first one of the following two commands: default-metric value no default-metric

Parameter

Parameter	Description
value	Stands for the to-be-set route weight, ranging between 1 and 16777214.

Default value

The default route weight is 10.

Command mode

Routing configuration mode

Usage guidelines

The **default-metric** command is used to set the default routing weight when the route of other routing protocol is guided into the OSPF packet. When the **redistribute** command is used to guide the route of other routing protocol, the default routing weight designated by the **default-metric** command will be guided the specific routing weight will not be specified.

Example

The following example shows how to introduce the static route and set the default route weight of other routing protocol to 3:

interface vlan 1

ipv6 address 2001::1/64 ipv6 ospf 1 area 36.0.0.0

ļ

router ospfv3 1

router-id 2.2.2.2

default-metric 3

redistribute static

Related command

redistribute

36.1.1.16 filter

Syntax

To set the routing filtration table, run filter. To resume the default settings, run no filter.

filter {vlan vlan-interface-number | *} {in | out } {access-list access-list-name | gateway access-list-name | prefix-list prefix-list-name}

no filter {vlan vlan-interface-number | *} {in | out }

Parameter

vlan	Vlan interface
vlan-interface-nu mber	Interface number
*	All interfaces
In	Filtrates the received OSPF routes.
out	Filters the transmitted routes, which is not for a specific interface but for all interfaces.
access-list-name	Name of the IP access control list
access-list-name	Name of the IP access control list
prefix-list-name	Name of the prefix list

Default value

None

Command mode

Routing configuration mode

Example

The following example shows how to filter the received routes according to the mylist ACL.

router ospfv3 1

filter * in access-list mylist

Related command

None

36.1.1.17 ipv6 ospf area

Syntax

To enable the OSPFv3 protocol on an interface and specify an area for this interface, run the first one of the following two commands:

ipv6 ospf process-id area area-id [instance instance-id]

no ipv6 ospf process-id area area-id [instance instance-id]

Parameter

Parameter	Description
process-id	Stands for the OSPF process.
area-id	Stands for the OSPF area ID, which is specified by the interface.
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

None

Command mode

Interface configuration mode

Example

The following example shows how to enable OSPFv3 process 1 for interface vlan1 and set its area ID to 0.

interface vlan 1

ipv6 address 2001::1/64

ipv6 ospf 1 area 0

ļ

router ospfv3 1

router-id 2.2.2.2

Related command

None

36.1.1.18 ipv6 ospf cost

Syntax

To designate the cost for the OSPFv3 protocol running on the interface, run **ipv6 ospf cost**. To resume the default settings, run **no ipv6 ospf cost**.

ipv6 ospf cost cost [instance instance-id]

no ipv6 ospf *cost cost* [**instance** *instance-id*]

Parameter

Parameter	Description
cost	Cost for the OSPF protocol, which is an integer between 1 and 65535
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The default cost for the OSPFv3 protocol running on the interface is obtained based on the rate of the port.

Command mode

Interface configuration mode

Example

The following example shows how to set the cost for the OSPFv3 protocol running on interface vlan1 to 2:

interface vlan 1

ipv6 ospf cost 2

Related command

None

36.1.1.19 ipv6 ospf database-filter all out

Syntax

To designate an interface to filter those to-be-transmitted LSA, run the first one of the following two commands: ipv6 ospf database-filter all out [instance instance-id] no ipv6 ospf database-filter all out [instance instance-id]

Parameter

Parameter	Description
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The interface does not filter those to-be-transmitted LSAs.

Command mode

Interface configuration mode

Example

The following example shows how to set interface vlan 1 to filter those to-be-transmitted LSAs:

interface vlan 1

ipv6 ospf database-filter all out

Related command

None

36.1.1.20 ipv6 ospf dead-interval

Syntax

To designate the dead interval of the neighboring router, run **ipv6 ospf dead-interval** *seconds*. To resume the default value, run **ipv6 ospf dead-interval**.

ipv6 ospf dead-interval seconds [instance instance-id]

no ipv6 ospf dead-interval seconds [instance instance-id]

Parameter

Parameter	Description
seconds	Value of the dead interval for the neighboring router, which ranges from 1 to 2147483647 seconds
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The dead interval for the neighboring router is four times of hello-interval by default.

Command mode

Interface configuration mode

Usage guidelines

The value of the **dead-interval** parameter will be written to the HELLO packet and will be transmitted along with the HELLO packet. It must be ensured that the **dead-interval** parameter must be identical with that between the neighboring routers and the value of the **dead-interval** parameter must be four times of the value of the **hello-interval** parameter.

Example

The following example shows how to set the dead interval of the neighboring router on interface vlan1 to 60 seconds.

interface vlan 1

ipv6 ospf dead-interval 60

Related command

None

36.1.1.21 ipv6 ospf hello-interval

Syntax

To designate the interval for transmitting the HELLO packet on the interface, run **ipv6 ospf hello-interval** *seconds*. To resume the default settings, run **no ipv6 ospf hello-interval**. **ipv6 ospf hello-interval** *seconds* [**instance** *instance-id*]

no ipv6 ospf hello-interval seconds [**instance** instance-id]

Parameter

Parameter	Description
seconds	Transmission interval of the HELLO packet, ranging from 1 to 65535 seconds
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The interval for the P2P or Broadcast interface to send Hello packets is 10 seconds, while the interval for the P2MP or NBMA interface to send Hello packets is 30 seconds.

Command mode

Interface configuration mode

Usage guidelines

The value of the **dead-interval** parameter will be written to the HELLO packet and will be transmitted along with the HELLO packet. The smaller the hello-interval is, the sooner the change of the network topology will be found. However, much more path cost will be paid. It must be ensured that the parameter must be identical with that between the neighboring routers.

Example

The following example shows that the interval for transmitting the HELLO packet on interface vlan1 is set to 20 seconds.

interface vlan 1

ipv6 ospf hello-interval 20

Related command

ipv6 ospf dead-interval

36.1.1.22 ipv6 ospf mtu-ignore

Syntax

To set the MTU value of the transmitted DD packet to 0 on an interface and meanwhile omit the checkup of the MTU domain of the received DD packet, run the first one of the following two commands:

ipv6 ospf mtu-ignore [instance instance-id]
no ipv6 ospf mtu-ignore [instance instance-id]

Parameter

Parameter	Description
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The value of the MTU domain of the DD packet is set to be the MTU value of this interface and MTU checkup is not omitted.

Command mode

Interface configuration mode

Usage guidelines

OSPF judges whether the MTU value of the network segment, where an interface belongs, is consistent by checking the MTU value of the exchanged DD packet. If the MTU value of the received DD packet is bigger than the MTU value of this interface, the OSPF neighborhood cannot be set up.

Example

The following example shows how to set interface vlan1 to omit MTU checkup.

interface vlan 1

ipv6 ospf mtu-ignore

Related command

None

36.1.1.23 ipv6 ospf neighbor

Syntax

To set the OSPF neighbor on the non-broadcast network interface, run the first one of the following two commands:

ipv6 ospf neighbor *router-id ipv6-address* [**cost** *number*] [**database-filter all out**] [**poll-interval** *seconds*] [**priority** *number*] [**instance** *instance-id*]

no ipv6 ospf neighbor *router-id ipv6-address* [cost *number*] [database-filter all out] [poll-interval *seconds*] [priority *number*] [instance *instance-id*]

Parameter

Parameter	Description
router-id	Means the router ID of a neighbor.
ipv6-address	Means the local address of the neighbor's link.
cost number	Means the neighbor's cost, whose value ranges from 1 to 65535.
database-filter all out	Filters the transmitted LSAs.
poll-interval seconds	Means the query interval of a neighbor.
priority number	Means the neighbor's priority, whose value ranges from 0 to 255.
instance instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

No neighbors are set.

Command mode

Interface configuration mode

Usage guidelines

You shall specify a neighbor manually on the non-broadcast network. If neighbors invalidates, the Hello packet should be sent to this neighbor in poll interval.

Example

The following example shows how to set the neighbor of interface vlan1.

interface vlan 1

ipv6 ospf neighbor 1.1.1.1 FE80::FEFA:F7FF:FE2E:2B63

Related command

None

36.1.1.24 ipv6 ospf network

Syntax

To set the network type for the interface, run the first one of the following two commands.

ipv6 ospf network { broadcast | non-broadcast | point_to_multipoint [broadcast | non-broadcast] |
point-to-point} [instance instance-id]

no ip ospf network { broadcast | nonbroadcast | point_to_multipoint [broadcast | non-broadcast] |
point-to-point} [instance instance-id]

Parameter

Parameter	Description
broadcast	Sets the network type of the interface to broadcast .
nonbroadcast	Sets the network type of the interface to NBMA .
point-to-multipoint	Sets the network type of the interface to point-to-multipoint .
point-to-point	Sets the network type of the interface to point-to-point .
instance instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Command mode

Interface configuration mode

Usage guidelines

The interface in the broadcast network without multi-address access should be set to NBMA. In the NBMA network, the network should be set to **point-to-multipoint** if any two routers cannot be ensured to be directly reachable.

Example

The following example shows how to set interface vlan1 to NBMA.

interface vlan 1

ipv6 ospf network non-broadcast

Related command

None

36.1.1.25 ipv6 ospf priority

Syntax

To configure the priority for the interface to choose the router, run **ipv6 ospf priority** *priority*. To resume the default value, run **no ipv6 ospf priority**.

ipv6 ospf priority priority [instance instance-id]

no ipv6 ospf priority *priority* [**instance** *instance-id*]

Parameter

Parameter	Description
priority	Priority to choose the router, ranging between 0 and 255
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The default priority for the interface to choose the routers is 1.

Command mode

Interface configuration mode

Usage guidelines

When two routers in the same network segment want to be the selection router, the router with higher priority will be selected. If the priority of the two routers is the same, the router with a larger ID is selected. When the priority of a router is 0, the router cannot be selected as the designated router or the standby designated router. The priority is effective only on the networks except the nonpoint-to-point network.

Example

The following example shows how to set the priority to 8 when interface vlan1 selects the selection router.

interface vlan 1

ipv6 ospf priority 8

Related command

None

36.1.1.26 ipv6 ospf retransmit-interval

Syntax

To designate the retransmission interval for transmitting LSA between the interface and the neighboring router, run **ipv6 ospf retransmit-interval seconds**. To resume the default value, run **no ipv6 ospf retransmit-interval**. **ipv6 ospf retransmit-interval** seconds [**instance** *instance-id*] **no ipv6 ospf retransmit-interval** seconds [**instance** *instance-id*]

Parameter

Parameter	Description
seconds	Transmission interval for transmitting the link state broadcast between the
	interface and the neighboring router, ranging between 1 and 3600 seconds
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The default interval for transmitting the link state broadcast between the interface and the neighboring router is 5 seconds.

Command mode

Interface configuration mode

Usage guidelines

When a router transmits the link-state broadcast to its neighbor, the command will maintain the link-state broadcast until the peer receives the acknowledgement. If the link-state broadcast is not received during the transmission interval, it will be retransmitted. The value of the **seconds** parameter must be larger than the round-trip time for a packet transmitting between two routers.

Example

The following example shows how the default interval for transmitting the link-state broadcast between interface vlan1 and the neighboring router is set to 8 seconds.

interface vlan 1

ipv6 ospf retransmit-interval 8

Related command

None

36.1.1.27 ipv6 ospf transmit-delay

Syntax

To set the delay for the link-state broadcast to be transmitted on the interface, run **ipv6 ospf transit-delay time**. To resume the default value, run **no ipv6 ospf transit-delay**. **ipv6 ospf transmit-delay** *time* [**instance** *instance-id*] **no ipv6 ospf transmit-delay** *time* [**instance** *instance-id*]

Parameter

Parameter	Description
time	Means the delay of link state broadcast transmission on an interface, which ranges from 1 to 3600 seconds.
instance-id	Specifies the OSPF instance ID of the interface, whose default value is 0.

Default value

The default delay for the link-state broadcast to be transmitted on the interface is 1 second.

Command mode

Interface configuration mode

Example

The following example shows how to set the delay for transmitting the link-state broadcast on interface vlan1 to 3 seconds.

interface vlan 1

```
Ipv6 ospf transmit-delay 3
```

Related command

None

36.1.1.28 passive-interface

Syntax

To forbid a designated interface to transmit or receive the OSPFv3 packets, run the first one of the following two

commands:

<pre>passive-interface { interface-type interface-number all }</pre>
<pre>no passive -interface { interface-type interface-number all }</pre>

Parameter

Parameter	Description
interface-type interface-number	Means the interface type and the interface ID.
all	Means all interfaces.

Default value

The interface is allowed to transmit or receive the OSPFv3 packets.

Command mode

Routing configuration mode

Usage guidelines

Different processes can forbid a same interface to transmit or receive the OSPFv3 packets, but the passive-interface command takes effect only on the OSPFv3 interface.

Example

The following example shows how to forbid interface vlan1 to receive and transmit the OSPFv3 packets in the OSPFv3 process.

router ospfv3 100

passive-interface vlan 1

Related command

None

36.1.1.29 redistribute

Syntax

To configure the route where OSPF forwards other routing protocols, run **redistribute**. To resume the default settings, run **no redistribute**.

redistribute protocol [as-number] [route-map map-tag]
no redistribute protocol [as-number] [route-map]

Parameter

Parameter	Description			
protocol	Means to forward the learned original protocol.			
as_number	Means the number of the autonomous system which is not for the connect or static parameter.			
map-tag	Means the name of the route map.			

Default value

Not forward

Command mode

Routing configuration mode

Usage guidelines

None

Example

The following example shows how to forward the static route in OSPF process 1:

interface vlan 1

ipv6 ospf 1 area 0

ļ

router ospfv3 1

router-id 2.2.2.2

redistribute static

36.1.1.30 router ospfv3

Syntax

To enable OSPFv3 and enter the OSPFv3 configuration view, run the first one of the following two commands: router ospfv3 *process-id* no router ospfv3 *process-id*

Parameter

Parameter	Description
-----------	-------------

process-id

Identifies the OSPF process. It is a positive integer distributed by the local router.

Default value

None

Command mode

Global configuration mode

Usage guidelines

One router may have multiple OSPFv3 processes.

Example

The following example shows how to set an OSPFv3 process, whose process ID is 109:

router ospfv3 109

Related command

ipv6 ospf area

36.1.1.31 router-id

Syntax

To set the router ID in the autonomous system for the router on which the OSPFv3 protocol is running, run the first one of the following two commands: **router-id router-id no router-id**

Parameter

Parameter	Description
router-id	Means the identifier of the router, which is in the IPv4 address format.

Default value

If an IPv4 address has already configured on a router before OSPFv3 is enabled, the router will automatically choose an IPv4 address as its ID.

Command mode

Routing configuration mode

Usage guidelines

The router ID is the unique identifier of a OSPFv3-running router in the autonomous system, so the router IDs of two routers in the autonomous system are different. If a router has no router ID, the OSPFv3 process cannot go on.

Example

The following example shows how to set the router ID of OSPFv3 process 1 to 2.2.2.2:

router ospfv3 1

router-id 2.2.2.2

36.1.1.32 show ipv6 ospf

Syntax

To display the main OSPFv3 information, run the following command: **show ipv6 ospf** [*process-id*]

Parameter

Parameter	Description
process-id	Means the OSPF process ID.

Default value

None

Command mode

EXEC

Usage guidelines

The information exported by the command can help checking the OSPFv3 faults. If the **process-id** parameter follows the command, the information about the global configuration of the OSPFv3 process is displayed.

Example

The following example shows that the configuration information about all OSPFv3 processes will be displayed.

Switch#show ipv6 ospf 1

Routing Process "OSPFv3 (1)" with ID 1.1.1.1, 0x7266520

SPF schedule delay 5 secs, Hold time between SPFs 10 secs

Minimum LSA interval 5 secs, Minimum LSA arrival 1 secs

KYLAND

LSDB age interval 60 secs

Number of external LSA 0. (0x4d5d4e0). Checksum Sum 0x0000

Number of AS-Scoped Unknown LSA 0

Number of LSA originated 7

Number of LSA received 15

Number of areas in this router is 2

Number of transit areas in this router is 0

Area BACKBONE(0), 0x71b7730

Number of interfaces in this area is 1

SPF algorithm executed 4 times

Number of LSA 6. (0x4d5cfe0). Checksum Sum 0x40FB3

Number of Unknown LSA 0

Area 0.0.0.1, 0x71b6de8

Number of interfaces in this area is 1

SPF algorithm executed 1 times

Number of LSA 3. (0x4d59278). Checksum Sum 0x191B6

Number of Unknown LSA 0

Relative fields are explained in the following table:

Domain	Description
Routing Process "OSPFv3 1"	ID of the process
with ID 1.1.1.1	ID of the router
SPF schedule delay 5 secs, Hold time between SPFs 10	Two timer values relative with OSPF
secs	
Number of areas in this router is 2	Number of the currently-configured fields, and parameters configured in each field
Number of LSA originated / received 7 /15	The number of received and generated quantity of LSAs is 7, 15 respectively.
Number of external LSA 0	Number of fifth type Isa in the database

SPF algorithm executed 4	SPF algorithm execution statistics
times	

36.1.1.33 show ipv6 ospf database

Syntax

To display the database information about the OSPFv3 connection state, run the following command: **show ipv6 ospf database** [router | network | inter-prefix | inter-router | external | nssa | link | intra-prefix][adv-router router-id][database-summary]

Parameter

Parameter	Description			
router	Means the LSA type is the router.			
network	Means the LSA type is the network.			
inter-prefix	Means the LSA type is the inter-domain route.			
inter-router	Means the LSA type is the inter-domain router.			
external	Means the LSA type is the exterior route.			
nssa	Means the LSA type is the nssa exterior route.			
link	Means the LSA type is the link.			
intra-prefix	Means the LSA type is the inside-domain route.			
adv-router	Means to declare the router ID.			
database-summary	Means to show database summary.			

Default value

None

Command mode

EXEC

Usage guidelines

The information exported by the command can help to check the database information about the OSPFv3 connection state and to find the reason of the faults.

Example

Switch#show ipv6 ospf data

OSPFv3 Router with ID (1.1.1.1) (Process 1)

Link-LSA (Interface VLAN1)

Link State ID	ADV Router	Age Seq#	CkSum	Prefix
0.0.0.26	1.1.1.1	396 0x8000000	1 0x6517	1
0.0.0.3	5.6.2.1	442 0x8000003	1 Oxf2cb	1
0.0.0.6	11.1.1.1	433 0x8000000	1 0x4146	1

Router-LSA (Area 0.0.0.0)

Link State ID	ADV Router	Age Seq#	CkSum	Link
0.0.0.0	1.1.1.1	320 0x800000	04 0x30b8	1
0.0.0.0	5.6.2.1	21 0x800000	06 0x985a	1
0.0.0.0	11.1.1.1	388 0x800000	04 0xb93a	1

Network-LSA (Area 0.0.0.0)

Link State ID	ADV Router	Age Seq#	CkSum
0.0.0.6	11.1.1.1	389 0x80000	002 0xfbf3

Inter-Area-Prefix-LSA (Area 0.0.0.0)

Link State ID	ADV Router	Age Seq#	CkSum
0.0.0.1	1.1.1.1	315 0x80000	002 0xe69c

Intra-Area-Prefix-LSA (Area 0.0.0.0)

Link State ID	ADV Router	Age Seq#	CkSum	Prefix	Reference
0.0.0.2	11.1.1.1	387 0x800000	1 Oxaed1	1	Network-LSA

	•		

Relative fields are explained in the following table:

Domain	Description
Area 0.0.0.0	Current area
Link-LSA	LSA type
Link State ID	LSA ID
ADV Router	Releases the router.
Age	Releases the age.
Seq #	Generates the sequence ID.
Checksum	Means the checksum.

36.1.1.34 show ipv6 ospf interface

Syntax

To display the information about the OSPFv3 interface, run the following command: **show ipv6 ospf interface** [type] [index]

Parameter

Parameter	Description
type	Port type
index	Port number

Default value

None

Command mode

EXEC

Usage guidelines

According to the information displayed by the command, you can check the OSPFv3 configuration and its running state, which helps you to detect the OSPFv3 faults.

Example

Switch# show ipv6 ospf interface			
VLAN1 is up, line protocol is up			
Interface ID 26, Interface MTU 1500			
Interface bandwidth 1000000			
IPv6 Prefixes			
2001::1/64			
fe80::fefa:f7ff:fe2e:2b63/64 (Link-Local Address)			
OSPFv3 Process (1), Area 0.0.0.0, Instance ID 0, 0x71b7520			
Router ID 1.1.1.1, Network Type BROADCAST, Cost: 1			
Transmit Delay is 1 sec, State DROther, Priority 1			
Designated Router (ID) 11.1.1.1			
Interface Address fe80::fefa:f7ff:fe81:139			
Backup Designated Router (ID) 5.6.2.1			
Interface Address fe80::2e0:fff:fe87:0			
Timer interval configured, Hello 10, Dead 40, Wait 40, Retransmit 5			
Hello due in 00:00:04			
Neighbor Count is 2, Adjacent neighbor count is 2			
Number of LSA 3. (0x4d5c7e8). Checksum Sum 0x19928			

Number of Unknown LSA 0

Switch#

.....

Relative fields are explained in the following table:

Domain	Description
Link-Local Address	Address of port IPv6 link-local
Nettype	Network type of the OSPF interface
OSPFv3 Process (1)	ID of the OSPF process
Area 0.0.0.0	Current backbone domain
Router ID	ID of the router where the process belongs
Cost	Cost of the OSPF interface of the router

Transmit Delay is	Transmission delay
Priority	Priority for the interface of the router
Hello interval	Transmission interval of the Hello packet
Dead timer	Dead time
Retransmit	Retransmission interval
State	State of the OSPF port
Designated Router (ID)	ID of the designated router and the IP address of its port
Backup Designated Router (ID)	ID of the backup designated router and the IP address of its port
Neighbor Count is	Number of the neighboring routers
Adjacent neighbor count is	Number of neighbors that have established the neighborhood relation

36.1.1.35 show ipv6 ospf neighbor

Syntax

To display the information about OSPFv3 neighbor, run the following command. **show ipv6 ospf neighbor** [*interface_type interface_number* | *router-id* | *detail*]

Parameter

Parameter	Description
interface_type	Port type
interface_number	Port number
router-id	Router ID
detail	Displays the detailed information.

Default value

None

Command mode

EXEC

Usage guidelines

The information displayed by the command can help you to check whether the OSPFv3 neighbor configuration is right and to detect the OSPFv3 faults.

Example

Switch#show ipv6 ospf neighbor

OSPFv3 Process (1)

Neighbor ID	Pri	State	Dead Time	Interface	Instance ID
5.6.2.1	1	Full/Backup	00:00:31	VLAN1	0
11.1.1.1	1	Full/DR	00:00:32	VLAN1	0

Switch#

Relative fields are explained in the following table:

Domain	Description
OSPFv3 process	ID of the OSPF process
Neighbor	ID of a neighbor
Pri	Priority of a neighbor
State	Connection state related with the neighbor
DeadTime	Time of neighbor invalidation
Interface	Interface used by a router to reach its neighbor
Instance ID	Instance ID number

36.1.1.36 show ipv6 ospf route

Syntax

To display the information about the OSPFv3 routing table, run the following command: **show ipv6 ospf route**

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

The information displayed by the command can help you browse the OSPFv3 routing table and confirm whether the OSPFv3 trouble diagnosis is correctly carried out.

Example

Switch#show ipv6 ospf route	
OSPFv3 Process (1)	
Destination	Metric
Next-hop	
C 23::1/128	1
directly connected, Loopback9	
IA 52::1/128	2
via fe80::fefa:f7ff:fe81:139, VLAN1	
E2 99::1/128	1/150
via fe80::2e0:fff:fe87:0, VLAN1	
C 2001::/64	1

directly connected, VLAN1

Switch#

Relative fields are explained in the following table:

Domain	Description
Destination	Destination network segment
Metric	Cost of a route
Next-hop	Address of the next hop

36.1.1.37 show ipv6 ospf virtual-link

Syntax

To display the information about the OSPFv3 virtual link, run the following command: show ipv6 ospf virtual-link

Parameter

None

Default value

None

Command mode

EXEC

Usage guidelines

According to the information exported by the command, you can check the state of the OSPFv3 virtual link. You can run **show ipv6 ospf neighbor** to check the detailed information about the adjacent neighbor.

Example

Switch #show ipv6 ospf virtual-link

Virtual Link VLINK1 to router 5.6.7.8 is up

Transit area 0.0.0.1 via interface eth0, instance ID 0

Local address 3ffe:1234:1::1/128

Remote address 3ffe:5678:3::1/128

Transmit Delay is 1 sec, State Point-To-Point,

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5

Hello due in 00:00:01

Adjacency state Up

Relative fields are explained in the following table:

Domain	Description
neibhbor ID	Neighbor ID of the peer
neighbor state	Neighborhood state for the neighbor
TransArea	Transmission area
cost	Minimum cost for reaching the peer in the transmission area
	If the value of the cost is 0, it means that the peer is unreachable.
Hello Interval	Current transmission interval for the Hello packet
DeadTime	Time of neighbor invalidation
Retrans	Retransmission interval
Adjacency state	State of the virtual link interface

Related command

area vritual-link

show ipv6 ospf neighbor

36.1.1.38 summary-prefix

Syntax

To configure the address for OSPFv3 to create the route aggregation, run **summary-prefix**. To cancel the address of route aggregation, run **no summary-prefix**.

summary-prefix ipv6-prefix /prefix-length [not-advertise] no summary-prefix ipv6-prefix /prefix-length [not-advertise]

Parameter

Parameter	Description
ipv6-prefix	Aggregation address with the designated address range
prefix-length	Subnet mask of the aggregation route
not-advertise	Do not post

Default value

None

Command mode

Routing configuration mode

Usage guidelines

Multiple groups of addresses are summarized. Routes learned from other routing protocols can also be summarized. After the aggregation, all covered networks cannot be transmitted to other routing fields. The cost of the summary route is the minimum value among the cost values of all summary routes. The command cannot be used to reduce the size of the routing table.

The command is used by OSPFv3 to enable the ASBR to notify an external route of being an aggregation route to replace all external routes. The command is only used to aggregate the OSPFv3 routes of other routing protocols. You can run **area range** in OSPFv3 to summarize the routes.

Example

In the following example, the summary address 2001::/64 stands for addresses such as 2001::/80, 2001::1/64 and so on, and only address 2001::/64 is broadcasted.

summary-prefix 2001::/64

Related command

area range

36.1.1.39 timers delay

Syntax

To designate a delay interval between OSPF receiving a topology change and starting a shortest path priority calculation, run **timers delay**. To resume the default settings, run **no timers delay**.

timers delay spf-delay

no timers delay spf-delay

Parameter

Parameter	Description
	Delay between the topology change and calculation start, ranges from 0 to
spf-delay	65535. Its default value is 5 seconds. If the value is 0, there is no delay. That is,
	the calculation will be promptly started if changes occur.

Default value

spf-delay: 5 seconds

Command mode

Routing configuration mode

Usage guidelines

The smaller value the delay is set to, the faster the network change is reflected. However, it will take the processor more time.

Example

The following example shows how to set the time for OSPF to start calculating the delay is 10 seconds.

timers delay 10

36.1.1.40 timers hold

Syntax

To set the interval between two continuous SPF calculations, run timers hold. To resume the default settings, run

no timers hold.

timers hold spf-holdtime

no timers hold spf-holdtime

Parameter

Parameter	Description
	Minimum value between two continuous calculations.
spf-holdtime	It ranges between 0 to 65535 seconds. Its default value is 10 seconds; when it is
	0, there is no interval between the two continuous calculations.

Default value

spf-holdtime: 10 seconds

Command mode

Routing configuration mode

Usage guidelines

The smaller value the delay is set to, the faster the network change is reflected. However, it will take the processor more time.

Example

The following example shows how to set the interval between two successive SPF calculations to 20 seconds: timers hold 20

36.1.1.41 timers age

Syntax

To configure the time interval of OSPF checking LSA database aging, run the following command. To return to the default setting, use the no form of this command.

timers age agetime

no timers age agetime

Parameter

Parameter	Description
agetime	Check LSDB database every agetime second and delete aging Isa.

Default value

agetime: 60 seconds

Command mode

Routing configuration mode

Usage guidelines

The smaller the time interval, the faster the database reflects but with more time for the processor.

Example

The following example shows how to set the aging time of OSPF checking LSDB to 50 seconds. timers age 50

37 NTP Configuration Commands

37.1 NTP Configuration Commands

37.1.1 NTP Commands

37.1.1.1 ntp master

Syntax

ntp master primary command is used to set the device as the original NTP server (stratum=1)
ntp master secondary command is used to set device as the secondary NTP server
no ntp master command is used to disable NTP server

Parameter

None

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

If the device is not configured with NTP server (**ntp server** command is not configured), **ntp master primary** command must be configured. Or the switch cannot provide time synchronization service. **ntp master secondary** command must be run when the switch configures NTP server. Moreover, the switch can provide time synchronization service to the NTP client in condition its own time synchronization is realized.

Example

Switch_config#ntp master primary

Switch_config#ntp master secondary

Switch_config#no ntp master

Related Command

ntp server ntp peer

37.1.1.2 ntp authentication enable

Syntax

ntp authentication enable command

no ntp authentication enable

To enable NTP identity authentication, run the above command. To return to the default setting, use the no form of this command.

Parameter

None

Default

Disabled

Command Mode

Global Configuration Mode

Usage Guidelines

For a secure network, NTP identity authentication must be enabled when operating NTP protocol. The identity authentication ensures that the client only realize time synchronization with the server which passes the identity authentication. Thus, the client will not obtain error time information from the illegal server.

Example

Switch_config#ntp authentication enable

Related Commands

ntp authentication key ntp authentication trusted-key

37.1.1.3 ntp authentication key

Syntax

ntp authentication key keyid md5 password

no ntp authentication key keyid

To set NTP identity authentication key, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
keyid	The serial number of the authentication key. The value ranges from 1 to
	4294967295.
password	The key of keyed. The length ranges from 1 to 50.

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

The command is used to set identity authentication key. The client and the server must set the same key serial number and key value, or they cannot realize time synchronization.

After set NTP authentication key, Set the key as the trusted key by command **ntp authentication trusted-key**. The trusted key will automatically disappear from the trusted key list when it is deleted. There is no need to run command "**no ntp authentication trusted-key**".

The command can set multiple ntp authentication key commands.

Example

Switch_config#ntp authentication key 5 md5 abc123

Switch_config#no ntp authentication key 5

Related Commands

ntp authentication enable ntp authentication trusted-key

37.1.1.4 ntp authentication trusted-key

Syntax

ntp authentication trusted-key keyid

no ntp authentication trusted-key keyid

To set the created key as the trusted key, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
keyid	The serial number of the trusted key. The value ranges from 1 to 4294967295.

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

Enable the identity authentication function, the client can only time synchronize with the server providing the trusted key. If the key provided by the server is not trusted, the client cannot synchronize to the NTP server. The command must be configured after the key is set. The trusted key will automatically disappear from the trusted key list when it is deleted. There is no need to run command "**no ntp authentication trusted-key**".

Example

Switch_config#ntp authentication trusted-key 5

Switch_config#no ntp authentication trusted-key 5

Related Commands

ntp authentication enable ntp authentication key

37.1.1.5 ntp server

Syntax

ntp server ip-address [version number | key keyid]*

no ntp server ip-address

To set NTP server, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
ip-address	NTP Server IP address

number	NTP version number, the value ranges from: <1-4>, the default value is 4.	
keyid	When sending NTP packets to the NTP server, calculate the packet information	
	abstract with the key corresponds to the keyid. The value ranges from 1 to	
	4294967295. If the parameter is not set, the device will not authenticate the	
	identity of the server, or vice verse.	
		keyid When sending NTP packets to the NTP server, calculate the packet information abstract with the key corresponds to the keyid. The value ranges from 1 to 4294967295. If the parameter is not set, the device will not authenticate the

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

After setting the NTP server, the device can time synchronize with the server, but the time of the server will not synchronize to the device.

The command can be used to set multiple ntp server commands. If the NTP server in the public network is applied, at least 4 different NTP servers need to be configured (in order to exclude the wrong clock source).

Example

Switch_config#ntp server 1.1.1.1 version 4 key 5

Related Commands

ntp authentication enable ntp authentication key ntp authentication trusted-key

37.1.1.6 ntp peer

Syntax

ntp peer *ip-address* [**version** *number* | **key** *keyid*]*

no ntp peer ip-address

To designate the NTP peer for the device, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parameter Description

ip-address	NTP peer IP address
number	NTP version number. The value ranges from 1 to 4. The default value is 4.
keyid	When sending NTP packets to the NTP server, calculate the packet information
	abstract with the key corresponds to the keyid. The value ranges from 1 to
	4294967295. If the parameter is not set, the device will not authenticate the
	identity of the server, or vice verse.

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

Designate the NTP peer and the device can time synchronize with the peer in condition that it has synchronized. The command is usually used for mutual backup of the NTP server, not applicable for the client. To designate the NTP server, run the command **ntp server**.

Example

Switch_config#ntp peer 1.1.1.2 version 3 key 5

Related Commands

ntp authentication enable ntp authentication key ntp authentication trusted-key

37.1.1.7 show ntp

Syntax

show ntp [status]
To show NTP current status, run the above command.
show ntp associations [detail]
To show NTP association status, run the above command.
show ntp timers
To show NTP timer status, run the above command.

Parameter

None

Default

None

Command Mode

EXEC

Usage Guidelines

Show NTP relevant information

Example

Switch#show ntp

Time-zone: GMT+8:00, Shanghai

Current time: 2014-05-21 10:45:26

Clock Status: synchronized

Clock Stratum: 3

Leap Indicator: 0

Reference ID: 211.233.84.186

Clock Jitter: 0.004149

Clock Precision: -18

Clock Offset: 6.561 ms

Root Delay: 172.153 ms

Root Dispersion: 587.873 ms

Packets Sent: 30788

Packets Received: 27969 (bad version: 0)

Reference Time: 2014-05-21 10:41:37

Last Update Time: 2014-05-21 10:37:08

Switch#show ntp associations

ip address	reference clock	st	poll	reach	delay	offset	dispersion
		====	=====	=======			=====
61.110.197.50	204.123.2.5	2	64	377	59.99	0.96	2.7
27.114.150.12	193.190.230.65	2	64	377	489.97	-34.56	3.1
*211.233.84.186	204.123.2.5	2	64	377	19.99	9.15	3.0
198.55.111.50	216.229.0.50	3	64	377	229.98	-40.09	3.4
199.241.31.224	132.163.4.103	2	64	377	198.04	2.51	3.6
204.2.134.163	241.199.164.101	2	64	360	169.97	-17.16	942.8
			======	=======	=======		=====

Note: * system peer(master), poll(s), delay(ms), offset(ms), dispersion(ms)

Total Associations: 6

Related Command

None

37.1.1.8 debug ntp

Syntax

debug ntp packet
To enable NTP packet debug switch, run the above command.
debug ntp event
To enable NTP event debug switch, run the above command.
debug ntp error
To enable NTP error debug switch, run the above command.
debug ntp all
To enable NTP all debug switches, run the above command.
no debug ntp
To disable all debug switches, run the above command.

Parameter

None

Default

None

Command Mode

EXEC

Usage Guidelines

Check NTP running process by debug information.

Example

None

Related Command

None

37.1.1.9 time-zone

Syntax

time-zone name offset-hour [offset-minute]

no time-zone

To enable time zone function, run the first one of the above commands. To return to the default setting, use the no form of this command.

Parameter

Parameter	Description
name	Name of the time zone
offset-hour	Hour off-set of local time to UTC time (-12~12)
offset-minute	Minute offset of local time to UTC time (0~59); the default value is 0.

Default

None

Command Mode

Global Configuration Mode

Usage Guidelines

The command is used to transfer UTC to the local time.

Example

Switch_config#time-zone Beijing 8

Related Command

None

38 IP-Attack Prevention Configuration Commands

38.1 IP-Attack Prevention Configuration Commands

38.1.1 IP-Attack Prevention Commands

38.1.1.1 ip verify icmp ping-flood

Syntax

To restrict ping packet reception, use the above command.

Parameter

Parameter	Description
<1 - 50000>	The number of packets with the same source address allowed to be received per
	second, exceeding this threshold is considered as an attack.

Default

Default is 300 ping packets per second per source address.

Command mode

Global configuration mode

Example

switch_config#ip verify icmp ping-flood 500

switch_config#ip verify icmp ping-flood

Related command

ip verify icmp ping-sweep

38.1.1.2 ip verify icmp ping-sweep

Syntax

To restrict ping scanning, use the above command.

Parameter

Parameter	Description
<1 - 60>	Anti-attack detection cycle. During this period, the destination address of the
	ping packet that is more than one scan unit is considered an attack.

Note: One scan unit means that the hash value of the number of changes in address or port exceeds an internal rating.

Default

The default detection period is 3 seconds.

Command mode

Global configuration mode

Example

switch_config#ip verify icmp ping-sweep 2

switch_config#ip verify icmp ping-sweep

Related command

ip verify icmp ping-flood

38.1.1.3 ip verify tcp syn-flood

Syntax

To restrict tcp syn packet reception, use the above command.

Parameter

Parameter	Description
<1 - 50000>	The number of packets with the same source address allowed to be received per
	second, exceeding this threshold is considered as an attack.

Default

Default is 300 tcp syn packets per second per source address.

Command mode

Global configuration mode

Example

switch_config#ip verify tcp syn-flood 100

switch_config#ip verify tcp syn-flood

Related command

ip verify tcp syn-sweep ip verify tcp fin-scan ip verify tcp rst-flood

38.1.1.4 ip verify tcp syn-sweep

Syntax

To restrict tcp syn port scanning, use the above command.

Parameter

Parameter	Description
<1 - 60>	Anti-attack detection cycle. During this period, the destination port of the tcp syn
	packet that is more than one scan unit is considered an attack.

Default

The default detection period is 3 seconds.

Command mode

Global configuration mode

Example

switch_config#ip verify tcp syn-sweep 10

switch_config#ip verify tcp syn-sweep

Related command

ip verify tcp syn-flood

ip verify tcp fin-scan ip verify tcp rst-flood

38.1.1.5 ip verify tcp fin-scan

Syntax

To restrict tcp stealth fin scanning, use the above command.

Parameter

Parameter	Description
<1 - 60>	Anti-attack detection cycle. During this period, the destination port of the tcp fin
	packet that is more than one scan unit is considered an attack.

Default

The default detection period is 3 seconds.

Command mode

Global configuration mode

Example

switch_config#ip verify tcp fin-scan 10

switch_config#ip verify tcp fin-scan

Related command

ip verify tcp syn-flood ip verify tcp syn-sweep ip verify tcp rst-flood

38.1.1.6 ip verify tcp rst-flood

Syntax

To restrict tcp rst packet reception, use the above command.

Parameter

Parameter	Description
<1 - 50000>	The number of packets with the same source address allowed to be received per
	second, exceeding this threshold is considered as an attack.

Default

Default is 300 tcp rst packets per second per source address.

Command mode

Global configuration mode

Example

switch_config#ip verify tcp rst-flood 200

switch_config#ip verify tcp rst-flood

Related command

ip verify tcp syn-flood ip verify tcp syn-sweep ip verify tcp fin-scan

38.1.1.7 ip verify udp udp-flood

Syntax

To restrict UDP packet reception, use the above command.

Parameter

Parameter	Description
<1 - 50000>	The number of packets with the same source address allowed to be received per
	second, exceeding this threshold is considered as an attack.

Default

Default is 300 udp packets per second per source address.

Command mode

Global configuration mode

Example

switch_config#ip verify udp udp-flood 200

switch_config#ip verify udp udp-flood

Related command

ip verify udp udp-sweep

38.1.1.8 ip verify udp udp-sweep

Syntax

To restrict udp scanning, use the above command.

Parameter

Parameter	Description
<1 - 60>	Anti-attack detection cycle. During this period, the destination port of the tcp fin
	packet that is more than one scan unit is considered as an attack.

Default

The default detection period is 3 seconds.

Command mode

Global configuration mode

Example

switch_config#ip verify udp udp-sweep 10

switch_config#ip verify udp udp-sweep

Related command

ip verify udp udp-flood

38.1.1.9 ip verify attack Xmas-Tree

Syntax

To filter Xmas-Tree scan attacks, use the above command.

Parameter

Parameter	Description
<1 - 60>	Anti-attack detection cycle. During this period, tcp fin packets are found with urg
	and push flags, and the destination port is more than one scan unit is considered
	as an attack.

Default

The default detection period is 3 seconds.

Command mode

Global configuration mode

Example

switch_config#ip verify attack Xmas-Tree 10

switch_config#ip verify attack Xmas-Tree

Related command

ip verify attack Null-scan ip verify attack Land ip verify attack Smurf ip verify attack WinNuke ip verify attack Ping-of-Death ip verify attack TearDrop ip verify attack Fraggle

38.1.1.10 ip verify attack Null-scan

Syntax

To filter Null scan attack, use the above command.

Parameter

Parameter	Description
<1 - 60>	Anti-attack detection cycle. During this period, tcp packets carry an empty flag,
	and the destination port is more than one scan unit is considered as an attack.

Default

The default detection period is 3 seconds.

Command mode

Global configuration mode

Example

switch_config#ip verify attack Null-scan 10

switch_config#ip verify attack Null-scan

Related command

ip verify attack Xmas-Tree ip verify attack Land ip verify attack Smurf ip verify attack WinNuke ip verify attack Ping-of-Death ip verify attack TearDrop ip verify attack Fraggle

38.1.1.11 ip verify attack Land

Syntax

To filter Land attacks, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify attack Land

Related command

ip verify attack Xmas-Tree ip verify attack Null-scan ip verify attack Smurf ip verify attack WinNuke ip verify attack Ping-of-Death ip verify attack TearDrop ip verify attack Fraggle

38.1.1.12 ip verify attack Smurf

Syntax

To filter Smurf attacks, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify attack Smurf

Related command

ip verify attack Xmas-Tree ip verify attack Null-scan ip verify attack Land ip verify attack WinNuke ip verify attack Ping-of-Death ip verify attack TearDrop ip verify attack Fraggle

38.1.1.13 ip verify attack WinNuke

Syntax

To filter WinNuke attacks, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify attack WinNuke

Related command

ip verify attack Xmas-Tree ip verify attack Null-scan ip verify attack Land ip verify attack Smurf ip verify attack Ping-of-Death ip verify attack TearDrop ip verify attack Fraggle

38.1.1.14 ip verify attack TearDrop

Syntax

To filter TearDrop attacks, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify attack TearDrop

Related command

ip verify attack Xmas-Tree ip verify attack Null-scan ip verify attack Land ip verify attack Smurf ip verify attack WinNuke ip verify attack Ping-of-Death ip verify attack Fraggle

38.1.1.15 ip verify attack Fraggle

Syntax

To filter Fraggle attacks, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify attack Fraggle

Related command

ip verify attack Xmas-Tree ip verify attack Null-scan ip verify attack Land ip verify attack Smurf ip verify attack WinNuke ip verify attack Ping-of-Death ip verify attack TearDrop

38.1.1.16 ip verify all

Syntax

To filter all attacks, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify all

switch_config#no ip verify all

Related command

ip verify icmp ping-flood ip verify icmp ping-sweep ip verify tcp syn-flood ip verify tcp syn-sweep ip verify tcp fin-scan ip verify tcp rst-flood ip verify udp udp-flood ip verify udp udp-sweep ip verify attack Xmas-Tree ip verify attack Null-scan ip verify attack Land ip verify attack Smurf ip verify attack WinNuke ip verify attack TearDrop ip verify attack Fraggle

38.1.1.17 ip verify filter

Syntax

To filter packets, use the above command. After an attack has occurred, discard the packet that caused the attack for a duration of 3 minutes.

Parameter

Parameter	Description
<30 - 43200>	Stands for the time (in seconds) to block the attack source after detecting an
	attack. Up to 12 hours.

Default

Default blocking time is 180 seconds.

Command mode

Global configuration mode

Example

switch_config#ip verify filter 600

switch_config#no ip verify filter

Related command

None

38.1.1.18 ip verify enable

Syntax

To enable/disable attack protection, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify enable

switch_config#no ip verify enable

Related command

None

38.1.1.19 ip verify log-enable

Syntax

To enable the attack protection log, use the above command. After an attack has occurred, the relevant system log is output.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify log-enable

switch_config#no ip verify log-enable

Related command

ip verify enable

38.1.1.20 show ip table

Syntax

To display current IP data flow table, use the above command.

Parameter

None

Command mode

Non-user mode

Example

#show ip table

No.	Src-address	Dst-address	Timer
0	90.0.0.3	90.0.0.33	80
1	90.0.0.33	224.0.0.1	71
2	90.0.0.33	224.0.0.13	57

38.1.1.21 show ip table src

Syntax

To display the current IP source address index table, use the above command.

Parameter

None

Command mode

Non-user mode

Example

#show ip table src

KYLAND

No.	Src-address	Flow	s Flags
0	90.0.0.3	1	0x200
1	90.0.0.33	2	0

Flows: indicates the index of the data flow to which the IP source address belongs.

Flags: records the attack type of the IP source address.

39 IP Direct Network Segment Scanning Attack Protection Configuration Commands

39.1 IP Direct Network Segment Scanning Attack Protection Configuration Commands

39.1.1 IP Direct Network Segment Scanning Attack Protection Commands

39.1.1.1 ip verify ip-sweep detect unknown-host

Syntax

Enable/disable the anti-attack function for IP scanning of unidentified hosts on the directly connected network. When a certain number of incomplete arps are hit under a certain vlan, it is considered to have received an IP directly connected network segment scanning attack. The measures of **rate-limit** and **rate-limit-attacker** cannot be enabled at the same time.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config#ip verify ip-sweep detect unknown-host

Related command

ip verify ip-sweep action

KYLAND

39.1.1.2 ip verify ip-sweep action rate-limit

Syntax

To limit the speed of all ip packets, use the above command. Optional parameter includes limit of the window

time and the number of packets.

Parameter

Parameter	Description
<1 - 5>	Limit the time window size of IP packets (seconds).
<1 - 5000>	Number of IP packets allowed to be received in the time window.

Precautions

1. When the window time is reached, the number of passing IP packets will be specified again. The current limit is only limited to the packets sent to the CPU, and the IP packets that the hardware has learned to cache cannot be restricted.

2. ip verify ip-sweep action rate-limit cannot be configured when ip verify action rate-limit-attacker is configured

Default

Disabled by default.

When configuring this function without the optional parameter, the default window time is 1 second, and the default received IP packets are 200.

Command mode

Global configuration mode

Example

switch_config# ip verify ip-sweep action rate-limit 2 500

Related command

ip verify ip-sweep action rate-limit-attacker

39.1.1.3 ip verify ip-sweep action rate-limit-attacker

Syntax

To enable rate limit of all ip packets that are detected as attackers, use the above command. Optional

parameter includes limit of the window time and the number of packets.

This command will override the effect of the ip verify ip-sweep action rate-limit command.

Parameter

Parameter	Description
<1 - 5>	Limit the time window size of IP packets (seconds)
<1 - 5000>	Number of IP packets allowed to be received in the time window

Default

Disabled by default.

When configuring the command without the optional Parameter, if the time window and number of packets are configured with the **ip verify action rate-limit** command, the default window time and the number of packets will inherit this value. If not configured, the default window time is 1 second, and the default received IP packets are 200.

Command mode

Global configuration mode

Example

switch_config# ip verify ip-sweep action rate-limit-attacker 2 1000

Related command

ip verify ip-sweep action rate-limit

39.1.1.4 ip verify ip-sweep action no-cache

Syntax

To prohibit the creation of caches for unidentified hosts on directly connected networks, and delete the software cache that continuously flows to unidentified hosts, use the above command.

Parameter

None

Default

Disabled

Command mode

Global configuration mode

Example

switch_config# ip verify ip-sweep action no-cache

Note

Currently only prohibited:

1. The destination outlet is an incomplete arp stream.

2. When the number of incomplete arps reaches the upper limit, it is forbidden to create a cache for a stream without corresponding arp.

When the number of incomplete arps is not yet full and there is no corresponding stream generated by arp, you are allowed to create a cache.

39.1.1.5 show ip verify config

Syntax

To display the current configuration of IP directly connected network segment scanning anti-attack detection, use the above command.

Parameter

None

Command mode

Non-user mode

Example

switch_config# show ip verify config

IP-sweep unknown-host	: Enabled	
IP-sweep action logging	: Enabled	
IP-sweep action no-cache	: Disabled	
IP-sweep action rate-limit	: Enabled	
IP-sweep action rate-limit-attacker: Disabled		
Rate-limit time-window in unit of se	econd : 1	
Number of packets allowed every ti	me-window: 200	

IP-sweep filter time : 180

Note: The switch interface is aligned, the word display is not neat

39.1.1.6 show ip verify status

Syntax

To shows whether the IP-direct network segment scanning anti-attack detection is enabled, whether it has received an attack, and details of the attacker, use the above command.

Parameter

None

Command mode

Non-user mode

Example

switch_config# show ip verify status

Detection for Unknown-host(connected network sweep) attack configured

Unknown-host(connected network sweep) attack detected

Number of Unknown-host(connected network sweep) attackers: 1

Attacker 100.1.1.10, count 32, VLAN 100, port g2/1

40 Interface Cable Diagnostic Configuration Commands

40.1 Interface Cable Diagnostic Configuration Commands

40.1.1 Interface Cable Diagnostic Configuration Commands

Interface cable diagnostic configuration commands include:

(20) cable-diagnostic

40.1.1.1 cable-diagnostic

Syntax

[no] cable-diagnostic [period]

Enter the configuration port mode. Only used for physical electrical ports.

Parameter

Parameter	Description
period	Indicates the diagnostic period (in seconds). Range is from 1 to 32767.

Default

It is disabled by default. If period is not specified, it will only be detected once. But the diagnostic result will remain until you cancel it with the no form of the command.

Usage Guidelines

You can configure this command in port mode. There may be a delay during the configuration. After configuration, you can see the corresponding test results through **show interface xxxx** command.

Example

The following example performs cable diagnostic on port g0/4 once:

Switch_config#

Switch_config#interface gigaEthernet0/4

Switch_config_g0/4#cable-diagnostic

Switch_config#

Switch_config_g0/4#show int g0/4

.

Cable Ok (4 pairs)

Pair A Ok, length < 1 metres

Pair B Ok, length < 1 metres

Pair C Ok, length < 1 metres

Pair D Ok, length < 1 metres

.....

It shows that the diagnostic status of the four pairs of cables is OK, and the length is less than 1 meter. Cable status:

I OK: indicates that the wire pair ends normally.

I Open: indicates that the wire pair is open.

I Short: indicates that the wire pair is short circuited.

I Crosstalk (crosstalk): indicates that there is crosstalk between the wire pairs (interference with each other).

I Unknown: Other causes of failure.

The following example performs cable diagnostic on port g0/4 for a period of 3 seconds:

Switch_config#

Switch_config#interface gigaEthernet0/4

Switch_config_g0/4#cable-diagnostic period 3

Switch_config#

Note:

The test results cannot guarantee the accuracy of the cables produced by all manufacturers. The test results are for reference only.

The diagnostic process may affect the normal use of services on the interface, so it is best to disable this function through the no form of the command after diagnostic.

41 **Optical Port Additional Function Configuration Commands**

41.1 Optical Port Additional Function Configuration Commands

41.1.1 Configure the DDM Function

41.1.1.1 ddm enable

Syntax

To enable DDM detection function of the optical port, use **ddm enable** command. **ddm enable**

Parameter

Parameter	Description
enable	Enable optical port ddm detection.

Default

None

Command mode

Global configuration mode

Example

ddm enable

41.1.1.2 no ddm

Syntax

no ddm To disable DDM detection function of the optical port, use **no ddm** command.

Parameter

None

Default

None

Command mode

Global configuration mode

Example

The following example shows how to disable DDM detection function of the optical port. Switch-config#no ddm

41.1.2 Configure the single-fiber transceiver function of the optical port

41.1.2.1 single-fiber one-way

Syntax

To configure the transceiver function of the optical fiber, use the following command. single-fiber one-way $\langle tx/rx \rangle$ **no** single-fiber

Parameter

Parameter	Description
tx	Configure the port to work in single-fiber transmission mode.
rx	Configure the port to work in single-fiber receiving mode.

Default

None

Command mode

None

Example

The following example shows how to configure single-fiber transmission mode isolation on port g0/1.

Switch_config_g0/1#single-fiber one-way tx

The following example shows how to cancel single fiber mode of port g0/1.

Switch_config_g0/1#no single-fiber

41.1.3 Optical module auto-configuration

41.1.3.1 fiber-auto-config

Syntax

To enable the storm control function of the port, use the following command. fiber-auto-config {**full**}

Parameter

Parameter	Description
full	When switching to gigabit mode mode, configure in forced mode.
None	When switching to gigabit mode, configure in adaptive mode.

Default

None

Command mode

Interface configuration mode

Example

The following example enables the optical module auto-configuration on interface g0/1, and use the adaptive mode in gigabit mode. Switch_config#interface g0/1 Switch_config_g0/1#fiber-auto-config The following example enables the optical module auto-configuration on interface g0/1, and use the forced mode in gigabit mode. Switch_config#interface g0/1 Switch_config#interface g0/1 Switch_config_g0/1#fiber-auto-config full

The following example cancels optical module auto-configuration of interface g0/1. Switch_config#interface g0/1 Switch_config_g0/1#no fiber-auto-config

Note:

When using a Gigabit optical conversion module that supports 10/100/1000M mode, you must configure this command in adaptive mode. When using a Gigabit optical conversion module that only supports the 1000M mode, you do not need to configure this command.